DOI QR코드

DOI QR Code

Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants

토마토 염류와 온도 스트레스에 대한 내성을 유도하는 미생물 선발

  • 유성제 (국립농업과학원 농업미생물과, 경상대학교 농업생명자원학과) ;
  • 신다정 (국립농업과학원 농업미생물과) ;
  • 원항연 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 상미경 (국립농업과학원 농업미생물과)
  • Received : 2018.04.24
  • Accepted : 2018.07.05
  • Published : 2018.08.31

Abstract

Salinity and extreme temperature stresses affect growth and productivity of crops negatively. Beneficial bacteria, including plant growth-promoting rhizobacteria (PGPR) induce growth promotion and tolerance of plants under abiotic stress conditions. In the present study, 20 strains were selected from 1944 isolated bacteria based on three plant growth-promoting (PGP) traits-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, indole-3-acetic acid production, and growth ability under salinity and extreme temperature stress conditions. Seven among the 20 strains were selected based on growth-promoting effects on plants under saline or temperature stresses in tomato plants. It was expected that the seven strains could induce tolerance of tomato plants under salinity or extreme temperature stresses, which implies that these seven strains can act as potential inducers of multiple stresses tolerance in tomato plants.

국내 일부 시설재배지는 장기간 과도한 양분 투입 등에 의한 염류 집적 현상이 문제가 되어왔으며, 최근 이상기온에 따른 온도장해에 의한 피해도 발생하고 있다. 이러한 현상에 대해 친환경적으로 대처하기 위하여 고염류와 온도 스트레스에 대해 작물에 내성을 증강시키는 미생물을 선발하였다. 국내 토양에서 분리한 1,944균주중 고염류 또는 온도 스트레스 조건에서 세균의 생장과 식물생장촉진 관련 특성(IAA 생성, ACC deaminase 활성, 인산가용화능)을 고려하여 20균주를 1차 선발(전체 균주의 1.03%)하였다. 1차 선발한 20균주 중 토마토 식물검정을 통해 고염류 또는 온도스트레스에 대한 내성을 유도하는 7세균(1차 선발균주의 35%, 전체 균주의 0.36%)을 단계적으로 선발할 수 있었다. 선발된 세균은 16S rRNA 유전자의 염기서열 분석을 통해 모두 Bacillus 속에 속하는 것으로 확인되었다. 이러한 결과로 선발된 7균주는 토마토의 고염류 또는 온도 스트레스에 대한 효과적인 미생물 제제로 활용이 가능한 것을 확인할 수 있었다.

Keywords

References

  1. Ali, S. Z., V. Sandhya, M. Grover, N. Kishore, L. Venkateswar Rao, and B. Venkateswarlu. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 46: 45-55. https://doi.org/10.1007/s00374-009-0404-9
  2. Ashraf, M. and P. J. C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
  3. Athar, H. R. and M. Ashraf. 2009. Strategies for crop improvement against salinity and drought stress: An overview. In: Athar, H. R., Ozturk, M, (eds) Salinity and water stress: improving crop efficiency. pp. 1-16. Springer, New York, U.S.A.
  4. Bal, H. B., L. Nayak, S. Das, and T. K. Adhya. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366: 93-105. https://doi.org/10.1007/s11104-012-1402-5
  5. Bano, A. and M. Fatima. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils. 45: 405-413. https://doi.org/10.1007/s00374-008-0344-9
  6. Barka, E. A. and J. C. Audran. 1997. Response of champenoise grapevine to low temperatures: Changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. J. Hortic. Sci. Biotechnol. 72: 577-582. https://doi.org/10.1080/14620316.1997.11515546
  7. Bhardwaj, D., M. W. Ansari, R. K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell. Fact. 13, 66. https://doi.org/10.1186/1475-2859-13-66
  8. Bhatnagar-Mathur, P., V. Vadez, and K. K. Sharma. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27: 411-424. https://doi.org/10.1007/s00299-007-0474-9
  9. Bric, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538.
  10. Dimkpa, C, T. Weinand, and F. Asch. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x
  11. El-Daim, I. A. A., S. Bejai, and J. Meijer. 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil. 379: 337-350. https://doi.org/10.1007/s11104-014-2063-3
  12. Glick, B. R. 2006. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS. Microbiol. Lett. 251: 1-7.
  13. Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39. https://doi.org/10.1016/j.micres.2013.09.009
  14. Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
  15. Grover, M., S. Z. Ali, V. Sandhya, A. Rasul, and B. Venkateswarlu. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol. 27: 1231-1240. https://doi.org/10.1007/s11274-010-0572-7
  16. Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242. https://doi.org/10.1016/j.micres.2006.05.009
  17. Husen, E. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. Indian J. Agric. Sci. 4: 27-31.
  18. Kang, S.-M., A. L. Khan, M. Waqas, Y.-H. You, J.-H. Kim, J.-G. Kim, M. Hamayun, and I.-J. Lee. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9: 673-682. https://doi.org/10.1080/17429145.2014.894587
  19. Khan, A. L., M. Hamayun, M. Waqas, S.-M. Kang, Y.-H. Kim, D.-H. Kim, I.-J. Lee. 2012. Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol. Fertil. Soils. 48: 519-529. https://doi.org/10.1007/s00374-011-0649-y
  20. Khandelwal, A. and S. S. Sindhu. 2013. ACC Deaminase containing rhizobacteria enhance nodulation and plant growth in Clusterbean (Cyamopsis tetragonoloba L.). J. Microbiol. Res. 3: 117-123.
  21. Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  22. Kumar, D. 2005. Breeding for drought resistance. In: Ashraf M, Harris PJC (eds) Abiotic stress: Plant resistance through breeding and molecular approaches. pp. 145-147, Haworth Press, New York. U.S.A.
  23. Kumar, A, A. Kumar, S. Devi, S. Patil, C. Payal, and S. Negi. 2012. Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. 4: 1-5.
  24. Liang, Z. S., Z. R. Ding, and S. T. R. Wang. 1992. Study on type of water stress adaptation in both Brassica napus and B. juncea L. species. Acta. Botanika. 12: 38-45.
  25. Meena, R. K., R. K. Singh, N. P. Singh, S. K. Meena, and V. S. Meena. 2015. Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal. Agric. Biotechnol. 4: 806-811.
  26. Mishra, P. K., S. C. Bisht, P. Ruwari, G. Selvakumar, G. K. Joshi, and J. K. Bisht. 2011. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch. Microbiol. 193: 497-513. https://doi.org/10.1007/s00203-011-0693-x
  27. Mittler, R. and E. Blumwald. 2010. Genetic Engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61: 443-462. https://doi.org/10.1146/annurev-arplant-042809-112116
  28. Nadeem, S. M., M. Ahmadb, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32: 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
  29. O'Connell, P. F. 1992. Sustainable agriculture-a valid alternative. Outlook. Agric. 21: 5-12. https://doi.org/10.1177/003072709202100103
  30. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbial. 68: 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  31. Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plantarum. 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  32. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya. 17: 362-370.
  33. Polonenko, D. R., C. I. Mayfield, and E. B. Dumbroff. 1981. Microbial responses to salt-induced osmotic stress. Plant Soil. 63: 415-426. https://doi.org/10.1007/BF02370041
  34. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  35. Sarkar, A., P. K. Ghosh, K. Pramanik, S. Mitra, T. Soren, S. Pandey, M. H. Mondal, and T. K. Maiti. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 169: 20-32. https://doi.org/10.1016/j.resmic.2017.08.005
  36. Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  37. Sreenivasulu, N., S. K. Sopory, and P. B. Kavi-Kishor. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 388: 1-13. https://doi.org/10.1016/j.gene.2006.10.009
  38. Swamy, P. M. and B. Smith. 1999. Role of abscisic acid in plant stress tolerance. Cur. Sci. 76: 1220-1227.
  39. Theocharis, A., S. Bordiec, O. Fernandez, S. Paquis, S. Dhondt-Cordelier, F. Baillieul, C. Clement, and E. A. Barka. 2012. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant-Microbe. Interact. 25: 241-249. https://doi.org/10.1094/MPMI-05-11-0124
  40. Tiwari, S., V. Prasad, P. S. Chauhan, and C. Lata. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant responses to phytohormones through osmoprotection and gene expression regulation in rice. Front. Plant Sci. 8: 1510. https://doi.org/10.3389/fpls.2017.01510
  41. Tuteja N. 2007. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2: 135-138. https://doi.org/10.4161/psb.2.3.4156
  42. Vardharajula, S, S. Z. Ali, M. Grover, G. Reddy, and V. Bandi. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6: 1-14. https://doi.org/10.1080/17429145.2010.535178
  43. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  44. Yang, J., J. W. Kloepper, and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends. Plant Sci. 14: 1-4. https://doi.org/10.1016/j.tplants.2008.10.004