DOI QR코드

DOI QR Code

Foraging Behavior and Preys in Relation to Feeding Site Types of the Eurasian Oystercatcher (Haematopus ostralegus osculans) during the Breeding Season in Yubu Island, Korea

유부도 일대에 서식하는 검은머리물떼새 (Haematopus ostralegus osculans)의 번식기 섭식지 유형에 따른 섭식행동과 먹이원

  • Lee, Sang-Yeon (Division of Ecological Survey Research, National Institute of Ecology) ;
  • Choi, Yu-Seong (Division of Basic Research, National Institute of Ecology) ;
  • Joo, Sungbae (Division of Basic Research, National Institute of Ecology) ;
  • Jeong, Gilsang (Division of Basic Research, National Institute of Ecology) ;
  • You, Young-Han (Department of Biological Sciences, Kongju National University)
  • 이상연 (국립생태원 생태조사연구실) ;
  • 최유성 (국립생태원 생태기반연구실) ;
  • 주성배 (국립생태원 생태기반연구실) ;
  • 정길상 (국립생태원 생태기반연구실) ;
  • 유영한 (공주대학교 생명과학과)
  • Received : 2018.04.20
  • Accepted : 2018.06.26
  • Published : 2018.06.30

Abstract

During the breeding season, some Eurasian Oystercatchers (Haematopus ostralegus osculans) in Yubu Island foraged in the open mudflat area nearby the breeding ground, instead of the tide water line area, main feeding site throughout the year. We found significant differences in foraging behavior and prey species diversity between the two different feeding site types. Even though the birds took more steps for most probably searching preys, their feeding success was much lower in the open mudflat area than the tide water line area. The multiple peck and boring methods were more frequently adopted to catch polychaetes on the open mudflat area, whereas the single peck method was dominant and gastropods and bivalves were main preys in the tide water line area. This study suggests that the bird shows flexible foraging strategy of shifting feeding site, foraging behavior and preys for better reproductive success.

섭금류인 검은머리물떼새(Haematopus ostralegus osculans)는 주로 조수 경계부를 섭식지로 이용하는데, 번식기에는 간조시 드러난 갯벌에서 섭식하는 개체들이 일부 관찰된다. 드러난 갯벌에서 섭식하는 경우 조수 경계부에 비해 걸음수가 더 많고, 먹이탐색을 위해 중복탐침과 찔러넣기 행동의 비율이 더 높았지만, 섭식성공률은 현저히 낮았다. 또한, 주요 먹이원은 드러난 갯벌에서는 갯지렁이류였지만, 조수 경계부에서는 복족류(서해비단고둥)와 이매패류로 섭식지 유형간 뚜렷한 차이가 있었다. 번식기에 국한하여 드러난 갯벌을 섭식지로 이용하는 현상은 본래 선호하는 섭식지에 비해 효율이 떨어지더라도 번식 성공을 위해 번식지와 가까운 지역을 섭식지로 이용하는 것으로 판단된다. 본 연구는 번식이라는 생활사 변화에 맞춰 검은머리물떼새가 섭식행동과 먹이원을 달리함으로써 환경 변화에 대한 적응이 가능하다는 것을 제안한다.

Keywords

References

  1. Alonso, J.C., J.A. Alonso and L.M. Carrascal. 1991. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Canadian Journal of Zoology 69: 1957-1962. https://doi.org/10.1139/z91-270
  2. Barbosa, A. 1996. Foraging habitat use in a Mediterranean estuary by dunlin, Calidris alpina. Journal of Coastal Research 12: 996-999.
  3. Boates, J.S. and J.D. Goss-Custard. 1992. Foraging behaviour of oystercatchers Haematopus ostralegus specializing on different species of prey. Canadian Journal of Zoology 70: 2398-2404. https://doi.org/10.1139/z92-321
  4. Bryant, D.M. 1979. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuarine and Coastal Marine Science 9: 369-384. https://doi.org/10.1016/0302-3524(79)90012-4
  5. Burger, J., M.A. Howe, D.C. Hahn and J. Chase. 1977. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds. Auk 94: 743-758. https://doi.org/10.2307/4085271
  6. Carlson-Bremer, D., T.M. Norton, K.V. Gilardi, E.S. Dierenfeld, B. Winn, F.J. Sanders, C. Cray, M. Oliva, T.C. Chen, S.E. Gibbs, M.S. Sepulveda and C.K. Johnson. 2010. Health assessment of American Oystercatchers (Haematopus palliatus palliatus) in Georgia and South Carolina. Journal of wildlife diseases 46: 774-780.
  7. Cezilly, F. and S. Benhamou. 1996. Optimal foraging strategies: a review. Revue d'ecologie (La Terre et la Vie) 51: 43-86.
  8. Cody, M.L. 1985. Habitat Selection in Birds. Academic Press, Orlando.
  9. Davis, C.A. and L.M. Smith. 2001. Foraging strategies and niche dynamics of coexisting shorebirds at stopover sites in the southern Great Plains. Auk 118: 484-495. https://doi.org/10.1642/0004-8038(2001)118[0484:FSANDO]2.0.CO;2
  10. De Vlas, S.J., A.E.J. Bunskoeke, B. Ens and J.B. Hulscher. 1996. Tidal changes in the choice of Nereis diversicolor or Macoma balthica as main prey species in the diet of the oystercatcher Haematopus ostralegus. Ardea 84: 105-116.
  11. Dias, M.P., J.P. Granadeiro, R.C. Martins and J.M. Palmeirim. 2006. Estimating the use of tidal flats by waders: inaccuracies due to the response of birds to the tidal cycle. Bird Study 53: 32-38. https://doi.org/10.1080/00063650609461413
  12. Drent, R., C. Both, M. Green, J. Madsen and T. Piersma. 2003. Pay-offs and penalties of competing migratory schedules. Oikos 103: 274-292. https://doi.org/10.1034/j.1600-0706.2003.12274.x
  13. Ens, B.J., M. Kersten, A. Brenninkmijer and J.B. Hulscher. 1992. Territory quality, parental effort and reproductive success of Oystercatcher (Haematopus ostralegus). Journal of Animal Ecology 61: 703-715. https://doi.org/10.2307/5625
  14. Ens, B.J., A.J. Bunskoeke, J.B. Hulscher and S.J. de Vlas. 1996. Prey choice and search speed: why simple optimality fails to explain the prey choice of Oystercatchers Haematopus ostralegus feeding on Nereis diversicolor and Macoma balthica. Ardea 84: 73-89.
  15. Esselink, P. and L. Zwarts. 1989. Seasonal trends in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Marine Ecology Progress Series 56: 243-254. https://doi.org/10.3354/meps056243
  16. Estrella, S.M., J.A. Masero, S. Probst and A. Perez-Hurtado. 2007. Small-prey profitability: Field analysis of shorebirds' use of surface tension of water to transport prey. Auk 124: 1244-1253. https://doi.org/10.1642/0004-8038(2007)124[1244:SPFAOS]2.0.CO;2
  17. Fretter, V. 1975. Umbonium vestiarium, a filter-feeding trochid. Journal of Zoology 177: 541-552.
  18. Goss-Custard, J.D., R.E. Jones and P.E. Newbery. 1977. The ecology of the Wash. I. distribution and diet of wading birds (Charadrii). Journal of Applied Ecology 14: 681-700. https://doi.org/10.2307/2402803
  19. Goss-Custard, J.D. and S.L.V. Durell. 1983. Individual and age differences in the feeding ecology of oystercatchers Haematopus ostralegus wintering on the Exe Estuary, Devon. Ibis 125: 155-171.
  20. Granadeiro, J.P., C.D. Santos, M.P. Dias and J.M. Palmeirim. 2007. Environmental factors drive habitat partitioning in birds feeding in intertidal flats: implications for conservation. Hydrobiologia 587: 291-302. https://doi.org/10.1007/s10750-007-0692-8
  21. Harrington, B.A. 2003. Shorebird management during the non-breeding season-an overview of needs, opportunities, and management concepts. Bulletin-Wader Study Group 100: 59-66.
  22. Heg, D. and M. van der Velde. 2001. Effects of territory quality, food availability and sibling competition on the fledging success of oystercatchers (Haematopus ostralegus). Behavioral Ecology and Sociobiology 49: 157-169. https://doi.org/10.1007/s002650000279
  23. Hulscher, J.B. 1982. The oystercatcher Haematopus ostralegus as a predator of the bivalve Macoma balthica in the Dutch Wadden Sea. Ardea 70: 89-152.
  24. Hulscher, J.B. 1996. Food and feeding behavior, p. 7-29. In: The Oystercatcher: from Individuals to Populations (Goss-Custard, J.D., ed.). Oxford University Press, New York.
  25. Kang, T.H., H.J. Cho, I.K. Kim, Y.S. Lee and S.W. Lee. 2010. Avifauna at Spring season in Yubudo island, Korea. Journal of Korean Nature 3: 213-218. https://doi.org/10.1016/S1976-8648(14)60025-6
  26. Kersten, M. and A. Brenninkmeijer. 1995. Growth, fledging success and post-fledging survival of juvenile Oystercatchers Haematopus ostralegus. IBIS 137: 396-404.
  27. Krebs, J.R. and N.B. Davies. 1993. An Introduction to Behavioral Ecology. Blackwell Science, Oxford.
  28. Kuwae, T. 2007. Diurnal and nocturnal feeding rate in Kentish plovers Charadrius alexandrinus on an intertidal flat as recorded by telescopic video systems. Marine Biology 151: 663-673. https://doi.org/10.1007/s00227-006-0506-y
  29. Kvist, A. and A. Lindstrom. 2003. Gluttony in migratory waders: Unprecedented energy assimilation rates in vertebrates. Oikos 103: 397-402. https://doi.org/10.1034/j.1600-0706.2003.12259.x
  30. Lee, H.S., J.Y. Yi, H.C. Kim, S.W. Lee and W.K. Paek. 2002. Yubu island, the important waterbird habitat on the west coast of Korea and it's conservation. Ocean and Polar Research 24: 115-21. https://doi.org/10.4217/OPR.2002.24.1.115
  31. Lee, S.D. 2016. Studies on breeding characteristics of Oystercatcher Haematopus ostralegus, at Yu-bu Island in Korea. PhD thesis, Kongju National University, Gongju, Korea. (in Korean)
  32. Martins, R.C., T. Catry, C.D. Santos, J.M. Palmeirim and J.P. Granadeiro. 2013. Seasonal variations in the diet and foraging behaviour of Dunlins Calidris alpina in a South European Estuary: improved feeding conditions for northward migrants. PLos ONE doi:10.1371/journal.pone.0081174.
  33. McNeil, R., O.D. Diaz, I. Linero and J.R. Rodriguez. 1995. Day- and night-time prey availability for waterbirds in a tropical lagoon. Canadian Journal of Zoology 73: 869-878. https://doi.org/10.1139/z95-102
  34. Melville, D.S., Y.N. Gerasimov, N. Moores, Y. Yat-Tung and Q. Bai. 2014. Conservation assessment of far eastern oystercatcher Haematopus [ostralegus] osculans. International Wader Studies 20: 129-154.
  35. Mercier, F. and R. McNeil. 1994. Seasonal variations in intertidal density of invertebrate prey in a tropical lagoon and effects of shorebird predation. Canadian Journal of Zoology 72: 1755-1763. https://doi.org/10.1139/z94-237
  36. Morse, D.H. 1982. Behavioral Mechanisms in Ecology. Harvard University Press, Cambridge.
  37. Mouritsen, K.N. and K.T. Jensen. 1992. Choice of microhabitat in tactile foraging dunlins Calidris alpina: the importance of sediment penetrability. Marine Ecology Progress Series 85: 1-8. https://doi.org/10.3354/meps085001
  38. Nehls, G. and R. Tiedemann. 1993. What determines the densities of feeding birds on tidal flats? A case study on Dunlin, Calidris alpina, in the Wadden Sea. Netherlands Journal of Sea Research 31: 375-384. https://doi.org/10.1016/0077-7579(93)90054-V
  39. Nolet, B.A. and W.M. Mooij. 2002. Search paths of swans foraging on spatially autocorrelated tubers. Journal of Animal Ecology 71: 451-462. https://doi.org/10.1046/j.1365-2656.2002.00610.x
  40. Pandiyan, J., S. Asokan, K. Thiyagesan and R. Nagrajan. 2006. Use of tidal flats in the Cauvery Delta region of SE India by shorebirds, gulls and terns. Bulletin-Wader Study Group 109: 95-101.
  41. Paynter, R.A. 1974. Avian Energetics. Nuttall Ornithological Club, Cambridge.
  42. Pienkowski, M.W. 1983. Surface activity of some intertidal invertebrates in relation to temperature and the foraging behaviour of their shorebird predators. Marine Ecology Progress Series 11: 141-150. https://doi.org/10.3354/meps011141
  43. Placyk, Jr J.S. and B.A. Harrington. 2004. Prey abundance and habitat use by migratory shorebirds at coastal stopover sites in Connecticut. Journal of Field Ornithology 75: 223-231. https://doi.org/10.1648/0273-8570-75.3.223
  44. Plissner, J.H., L.W. Oring and S.M. Haig. 2000. Space use of Killdeer at a Great Basin breeding area. The Journal of Wildlife Management 64: 421-429. https://doi.org/10.2307/3803240
  45. Raffaelli, D. and S. Hawkins. 1996. Intertidal Ecology. Chapman and Hall, London.
  46. Rodrigues, A.M., S. Meireles, T. Pereira, A. Gama and V. Quintino. 2006. Spatial patterns of benthic macroinvertebrates in intertidal areas of a southern European estuary: the Tagus, Portugal. Hydrobiology 555: 99-113. https://doi.org/10.1007/s10750-005-1109-1
  47. Rosa, S., J.P. Granadeiro, M. Cruz and J.M. Palmeirim. 2007. Invertebrate prey activity varies along the tidal cycle and depends on sediment drainage: consequences for the foraging behaviour of waders. Journal of Experimental Marine Biology and Ecology 353: 35-44. https://doi.org/10.1016/j.jembe.2007.08.019
  48. Santos, C.D., J.M. Palmeirim and J.P. Granadeiro. 2010. Choosing the best foraging microhabitats: individual skills constrain the choices of dunlins Calidris alpina. Journal of Avian Biology 41: 18-24. https://doi.org/10.1111/j.1600-048X.2009.04860.x
  49. Schwemmer, P. and S. Garthe. 2011. Spatial and temporal patterns of habitat use by Eurasian oystercatchers (Haematopus ostralegus) in the eastern Wadden Sea revealed using GPS data loggers. Marine biology 158: 541-550. https://doi.org/10.1007/s00227-010-1579-1
  50. Schwemmer, P., F. Guupner, S. Adler, K. Klingbeil and S. Garthe. 2016. Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors. Ecological Modelling 320: 322-333. https://doi.org/10.1016/j.ecolmodel.2015.10.023
  51. Stephens, D.W. and J.R. Krebs. 1986. Foraging Theory. Princeton University Press, New Jersey.
  52. Swennen, C., M.F. Leopold and L.L.M. de Bruijn. 1989. Time-stressed oystercatchers, Haematopus ostralegus, can increase their intake rate. Animal Behaviour 38: 8-22. https://doi.org/10.1016/S0003-3472(89)80061-2
  53. Tjorve, K.M. and E. Tjorve. 2010. Food of Eurasian Oystercatcher (Haematopus ostralegus) chicks raised on rocky shores in Southern Norway. Ornis Norvegica 33: 56-62. https://doi.org/10.15845/on.v33i0.146
  54. van de Kam, J., B. Ens, T. Piersma and L. Zwarts. 2004. Food. p. 147-230. In: Shorebirds: an Illustrated Behavioural Ecology (van de Kam, J., B. Ens, T. Piersma and L. Zwarts, eds.). KNNV Publishers, Utrecht.
  55. van de Pol, M., I. Pen, D. Heg and F.J. Weissing. 2007. Variation in habitat choice and delayed reproduction: Adaptive queuing strategies or individual quality differences? The American Naturalist 170: 530-554. https://doi.org/10.1086/521237
  56. van Gils, J.A., B. Spaans, A. Dekinga and T. Piersma. 2006. Foraging in a tidally structured environment by red knots (Calidris canutus): ideal, but not free. Ecology 87: 1189-1202. https://doi.org/10.1890/0012-9658(2006)87[1189:FIATSE]2.0.CO;2
  57. Wilson, Jr W.H. and E.R. Vogel. 1997. The foraging behaviour of semipalmated sandpipers in the upper Bay of Fundy: stereotyped or prey-sensitive? Condor 99: 206-210. https://doi.org/10.2307/1370240
  58. Yi, J.Y. 2001. Ecology of waders migrating to the west coast of Korea. PhD thesis, Kyung Hee University, Seoul, Korea. (in Korean)
  59. Zwarts, L. and J.H. Wanink. 1991. The macrobenthos fraction accessible to waders may represent marginal prey. Oecologia 87: 581-587. https://doi.org/10.1007/BF00320424
  60. Zwarts, L. and J.H. Wanink. 1993. How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Netherlands Journal of Sea Research 31: 441-476. https://doi.org/10.1016/0077-7579(93)90059-2
  61. Zweers, G.A. and A.F.C. Gerritsen. 1996. Transitions from pecking to probing mechanisms in waders. Netherlands Journal of Zoology 47: 161-208. https://doi.org/10.1163/156854297X00166