DOI QR코드

DOI QR Code

The Abnormal Groundwater Changes as Potential Precursors of 2016 ML5.8 Gyeongju Earthquake in Korea

지하수위 이상 변동에 나타난 2016 ML5.8 경주 지진의 전조 가능성

  • Lee, Hyun A (Earth System Sciences Research Center, Yonsei University) ;
  • Hamm, Se-Yeong (Dept. of Geological Sciences, Pusan National University) ;
  • Woo, Nam C. (Dept. of Earth System Sciences, Yonsei University)
  • 이현아 (연세대학교 지구시스템과학연구소) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 우남칠 (연세대학교 지구시스템과학연구소, 연세대학교 지구시스템과학과)
  • Received : 2018.07.12
  • Accepted : 2018.08.23
  • Published : 2018.08.28

Abstract

Despite some skeptical views on the possibility of earthquake prediction, observation and evaluation of precursory changes have been continued throughout the world. In Korea, the public concern on the earthquake prediction has been increased after 2016 $M_L5.8$ and 2017 $M_L5.4$ earthquakes occurred in Gyeongju and Pohang, the southeastern part in Korea, respectively. In this study, the abnormal increase of groundwater level was observed before the 2016 $M_L5.8$ Gyeongju earthquake in a borehole located in 52 km away from the epicenter. The well was installed in the Yangsan fault zone, and equipped for the earthquake surveillance. The abnormal change in the well would seem to be a precursor, considering the hydrogeological condition and the observations from previous studies. It is necessary to set up a specialized council to support and evaluate the earthquake prediction and related researches for the preparation of future earthquake hazards.

2016년 9월 12일 발생한 $M_L5.8$ 경주 지진과 2017년 11월 15일 $M_L5.4$ 포항 지진은 국내에 지진 예측가능성에 대한 관심을 불러일으켰다. 지진 예측의 가능성에 대한 회의적인 의견이 있음에도 불구하고 세계적으로는 지진 발생 전 이상 변동을 보이는 인자들의 관측과 평가가 지속되고 있다. 본 연구에서는 양산단층대의 지하수위 정밀 관측을 위해 시범 운용 중인 양산 지하수 정밀관측공에서 2015년부터 관측된 지하수의 비정상적인 상승 사례를 보고하였다. 이 이상 변동은 다양한 수리지질학적 인자들을 고려하였을 때 지진 전조일 가능성이 높다고 판단된다. 그럼에도 불구하고 단일 관정의 단일 요소에서 나타난 자료만으로 지진 전조를 섣불리 판단할 수 없다. 장기적으로는 전조 현상 연구와 평가를 위한 전문기구의 설립이 필요하다.

Keywords

References

  1. Barsukov, V.L., Varshal, G.M. and Zamokina N.S. (1985) Recent results of hydrogeochemical studies for earthquake prediction in the USSR. Pure Appl. Geophys., v.122, p.143-156. https://doi.org/10.1007/BF00874588
  2. Chang, C. and Jo, Y. (2015) Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks. Tectonophysics, v.664, p.83-97. https://doi.org/10.1016/j.tecto.2015.08.044
  3. Che, Y. and Yu, J. (1992) The statistical characteristics of groundwater level anomaly before some moderatestrong earthquakes in the Eastern China continent. Seismol. Geol., v.14(1), p.23-29 (in Chinese with English abstract).
  4. Che, Y. (2007) Earthquake/underground-water theory and monitoring technology (地震地下流体理论基礎基础与观测技术). Institute of Earthquake Forecasting, China Earthquake Administration, 261p. (in Chinese).
  5. Cicerone, R., Ebel, J.E. and Britton, J. (2009) A systematic compilation of earthquake Precursors. Tectonophysics, v.476, p.371-396. https://doi.org/10.1016/j.tecto.2009.06.008
  6. Dobrovolsky, I.P., Zubkov, S.I. and Miachkin, V.I. (1979) Estimation of the size of earthquake preparation zones. Pure Appl. Geophys., v.117, p.1025-1044. https://doi.org/10.1007/BF00876083
  7. Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice Hall, 604p.
  8. Hong, T.-K., Lee, J., Kim, W., Hahm, I.-K., Woo, N.C. and Park, S. (2017). The 12 September 2016 ML5.8 midcrustal earthquake in the Korean Peninsula and its seismic implications. Geophysical Research Letters, v.44, p.3131-3138, doi:10.1002/2017GL072899.
  9. Huang, F., Li, M., Ma, Y., Han, Y., Tian, L., Yan, W. and Li, X. (2017) Studies on earthquake precursors in China: A review for recent 50 years. Geodesy Geodyn., v.8, p.1-12. https://doi.org/10.1016/j.geog.2016.12.002
  10. Kim, J., Kim, M., Kim, S. and Lee, H. (2018) An analysis of anomalous radon variation caused by M5.8 Gyeongju earthquake. Econ. Environ. Geol., v.51(1), p.1-13 (in Korean with English abstract). https://doi.org/10.9719/EEG.2018.51.1.1
  11. Kitagawa, Y., Koizumi, N., Takahashi, M., Matsumoto, N. and Sato, T. (2006) Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0). Earth Planets Space, v.58(2), p.173-179. https://doi.org/10.1186/BF03353375
  12. Koizumi, N. (2013) Earthquake prediction research based on observation of groundwater. Synthesiology English ed., v.6(1), p.26-37.
  13. Korea Meteorological Administration (KMA), http://www.kma.go.kr/, last access: 2018.06.17.
  14. Kuo, T.-K., Chin, P.-Y. and Feng H.-T. (1974) Discussion on the change of ground-water level preceding a large earthquake from an earthquake source model. Acta Geophys. Sin., v.17(2), p.99-105 (in Chinese with English abstract).
  15. Lee, H.A. and Woo, N.C. (2012) Influence of the M9.0 Tohoku Earthquake on groundwater in Korea. Geosci. J., v.16(1), p.1-6. https://doi.org/10.1007/s12303-012-0010-y
  16. Lee, H.A, Hamm, S.-Y. and Woo, N.C. (2017) Groundwater monitoring network for earthquake surveillance and prediction. Econ. Environ. Geol., v.50(5), p.401-414 (in Korean with English abstract). https://doi.org/10.9719/EEG.2017.50.5.401
  17. Lee, H.A, Kim, M., Hong, T.-K. and Woo, N.C. (2011) Earthquake observation through groundwater monitoring: A case of M4.9 Odaesan earthquake. J. Soil Groundw. Environ., v.16(3), p.38-47 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2011.16.3.038
  18. Lee, J.-Y. (2016) Gyeongju earthquake recorded in daily groundwater data at national groundwater monitoring stations in Gyeongju. J. Soil Groundw. Environ., v.21(6), p.80-86 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2016.21.6.080
  19. Lee, S.-H., Ha, K., Hamm, S.-Y. and Ko, K.-S. (2013) Groundwater responses to the 2011 Tohoku Earthquake on Jeju Island, Korea. Hydrol. Process., v.27, p.1147-1157. https://doi.org/10.1002/hyp.9287
  20. Liu, Y. and Shi, J. (2000) Precautionary information of groundwater precursors in strong earthquakes (强震地下流体前兆信息特征). Earthquake, v.22(1), p.102-107 (in Chinese).
  21. Liu, Y., Lu, M.Y., Fu, H., Huang, F.Q. and Li, S.L. (2010) The researches on extraction of information in the groundwater and prediction of the strong earthquakes (地下流体动态信息提取与强震预测技术硏究). Dizhen Publishing House, Beijing, 317p. (in Chinese).
  22. Mjachkin, V.I., Brace, W.F., Sobolev, G.A. and Dieterich, J.H. (1975) Two Models for Earthquake Forerunners. In M. Wyss (Ed.), Earthquake Prediction and Rock Mechanics, Basel: Birkhauser Basel, p.169-181.
  23. Merifield, P.M. and Lamar, D.L. (1984) Possible Strain Events Reflected in Water Levels in Wells along San Jacinto Fault Zone, Southern California. Pure Appl. Geophys., v.122(2-4), p.234-254.
  24. Ministry of Public Safety and Security of Korea (MPSS) (2017) A white paper for 9.12 Earthquake in 2016. 405p. (in Korean).
  25. Rahi, K.A. and Halihan, T. (2013) Identifying Aquifer Type in Fractured Rock Aquifers using Harmonic Analysis. Ground Water, v.51(1), p.76-82. https://doi.org/10.1111/j.1745-6584.2012.00925.x
  26. Riggio, A. and Santulin, M. (2015) Earthquake forecasting: a review of radon as seismic precursor. B. Geofis. Teor. Appl., v.56(2), p.95-114.
  27. Rikitake, T. (1979) Classification of earthquake precursors. Tectonophysics, v.54(3-4), p.293-309. https://doi.org/10.1016/0040-1951(79)90372-X
  28. Rikitake, T. (1987) Earthquake precursors in Japan: precursor time and detectability. Tectonophysics, v.136, p.265-282. https://doi.org/10.1016/0040-1951(87)90029-1
  29. Rikitake, T. (1988) Earthquake prediction: an empirical approach. Tectonophysics, v.148(3-4), p.195-210. https://doi.org/10.1016/0040-1951(88)90128-X
  30. Roeloffs, E. and Quilty, E. (1997) Water Level and Strain Changes Preceding and Following the August 4, 1985 Kettleman Hills, California, Earthquake. Pure Appl. Geophys., v.149(1), p.21-60. https://doi.org/10.1007/BF00945160
  31. Roeloffs, E. (1988) Hydrologic precursors to earthquakes: A review. Pure Appl. Geophys., v.126(2-4), p.177-209. https://doi.org/10.1007/BF00878996
  32. Rojstaczer, S. and Agnew, D.C. (1989) The influence of formation material properties on the response of water levels in wells to earth tides and atmospheric loading. J. Geophys. Res. Solid Earth, v.94, p.12403-12411. https://doi.org/10.1029/JB094iB09p12403
  33. Ruegg, J.C., Rudloff, A., Vigny, C., Madariaga, R., de Chabalier, J.B., Campos, J., Kausel, E., Barrientos, S. and Dimitrov, D. (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitucion and Concepcion in Chile. Phys. Earth Planet. Inter., v.175(1-2), p.78-85. https://doi.org/10.1016/j.pepi.2008.02.015
  34. Shi, Z., Wang, G. and Liu, C. (2014) Advances in research on earthquake fluids hydrogeology in China: a review. Earthq. Sci., v.26(6), p.415-425. https://doi.org/10.1007/s11589-014-0060-5
  35. Sultankhodzhayev, A.N., Latipov, S.U., Zakrov, T.Z., Zigan, F.G., et al. (1980) Dependence of hydrogeoseismological anomalies on the energy and epicentral distance of earthquakes. Dokl. Akad. Nauk. UzSSR, v.5, p.57-59.
  36. Wang, C.-Y. and Manga, M. (2010a) Earthquakes and Water. Springer-Verlag Berlin Heidelberg, 225p.
  37. Wang, C.-Y. and Manga, M. (2010b) Hydrologic responses to earthquakes and a general metric. Geofluids, v.10, p.206-216.
  38. Wang, J., Chen, Q.-F., Sun, S. and Wang, A. (2006) Predicting the 1975 Haicheng earthquake. Bull. Seismol. Soc. Am., v.96(3), p.757-795. https://doi.org/10.1785/0120050191