DOI QR코드

DOI QR Code

Effects of a Novel p.A41P Mutation in the Swine Myogenic factor 5 (MYF5) Gene on Protein Stabilizing, Muscle Fiber Characteristics and Meat Quality

  • Ryu, Youn-Chul (Division of Biotechnology, Sustainable Agriculture Research Institute, Jeju National University) ;
  • Lee, Eun-A (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Chai, Han-Ha (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Jong-Eun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Jun-Mo (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2018.06.08
  • Accepted : 2018.06.25
  • Published : 2018.08.31

Abstract

Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle fiber characteristics, consequently affecting meat production and quality. We identified a novel p.A41P mutation in exon1 of the porcine MYF5 gene by direct sequencing. The mutation was predicted to be destabilizing in protein structure based on the resultant amino acid substitution. We estimated the significant substitution effect of p.A41P on the energy stabilization of Myf5 protein structure. Then, we demonstrated that the mutation in Yorkshire population significantly affected muscle fiber type I composition (p<0.05), loin-eye area of lean meat content (p<0.05) and filter-fluid uptake of meat quality (p<0.01). Furthermore, dominant effects significantly influenced total muscle fiber number (p<0.05). This study suggests that the novel p.A41P mutation in porcine MYF5 may be a valuable genetic marker to affect the muscle fiber characteristics and consequently improve meat production quality and quantity.

Keywords

References

  1. Atchley WR, Fitch WM, Bronner-Fraser M. 1994. Molecular evolution of the MyoD family of transcription factors. Proc Natl Acad Sci 91:11522-11526. https://doi.org/10.1073/pnas.91.24.11522
  2. Beylkin DH, Allen DL, Leinwand LA. 2006. MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Dev Biol 294:541-553. https://doi.org/10.1016/j.ydbio.2006.02.049
  3. Braun T, Bober E, Arnold HH. 1992a. Inhibition of muscle differentiation by the adenovirus E1a protein: Repression of the transcriptional activating function of the HLH protein Myf-5. Genes Dev 6:888-902. https://doi.org/10.1101/gad.6.5.888
  4. Braun T, Rudnicki MA, Arnold HH, Jaenisch R. 1992b. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369-382. https://doi.org/10.1016/0092-8674(92)90507-9
  5. Cepica S, Yerle M, Stratil A, Schroffel J, Redl B. 1999. Regional localization of porcine MYOD1, MYF5, LEP, UCP3 and LCN1 genes. Anim Genet 30:462-478.
  6. da Silva Carmo FM, Guimaraes SEF, Lopes PS, Pires AV, Guimaraes MFM, da Silva MVGB, Schierholt AS, de Moraes e Silva K, de Miranda Gomide LA. 2005. Association of MYF5 gene allelic variants with production traits in pigs. Genet Mol Biol 28:363-369. https://doi.org/10.1590/S1415-47572005000300004
  7. Foxcroft GR, Dixon WT, Novak S, Putman CT, Town SC, Vinsky MDA. 2006. The biological basis for prenatal programming of postnatal performance in pigs. J Anim Sci 84:E105-E112. https://doi.org/10.2527/2006.8413_supplE105x
  8. Gondret F, Lefaucheur L, Louveau I, Lebret B, Pichodo X, Le Cozler Y. 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livest Prod Sci 93:137-146. https://doi.org/10.1016/j.livprodsci.2004.09.009
  9. Handel SE, Stickland NC. 1987. Muscle cellularity and birth weight. Anim Sci 44:311-317.
  10. Jennen D, Brings A, Liu G, Jungst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C. 2007. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J Anim Breed Genet 124:2-11. https://doi.org/10.1111/j.1439-0388.2007.00681.x
  11. Kim JM, Choi BD, Kim BC, Park SS, Hong KC. 2009. Associations of the variation in the porcine myogenin gene with muscle fiber characteristics, lean meat production and meat quality traits. J Anim Breed Genet 126:134-141. https://doi.org/10.1111/j.1439-0388.2008.00724.x
  12. Klosowska D, Kuryl J, Elminowska-Wenda G, Kapelanski W, Walasik K, Pierzchala M, Cieslak D, Bogucka J. 2004. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain${\times}$(Polish Large White${\times}$Polish Landrace) crosses. Czech J Anim Sci 49(3):99-107.
  13. Liu M, Peng J, Xu D, Zheng R, Li J, Zuo B, Lei M, Xiong Y, Deng C, Jiang S. 2007. Associations of MYF5 gene polymorphisms with meat quality traits in different domestic pig (Sus scrofa) populations. Genet Mol Biol 30:370-374. https://doi.org/10.1590/S1415-47572007000300012
  14. Liu M, Peng J, Xu DQ, Zheng R, Li FE, Li JL, Zuo B, Lei MG, Xiong YZ, Deng CY. 2008. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White${\times}$Meishan F2 pig populations. Biochem Genet 46:720-732. https://doi.org/10.1007/s10528-008-9187-1
  15. Olson EN. 1990. MyoD family: A paradigm for development? Genes Dev 4:1454-1461. https://doi.org/10.1101/gad.4.9.1454
  16. Paredes S, Kalbe C, Jansman A, Verstegen M, van Hees H, Losel D, Gerrits W, Rehfeldt C. 2013. Predicted high-performing piglets exhibit more and larger skeletal muscle fibers. J Anim Sci 91:5589-5598. https://doi.org/10.2527/jas.2013-6908
  17. Rehfeldt C, Tuchscherer A, Hartung M, Kuhn G. 2008. A second look at the influence of birth weight on carcass and meat quality in pigs. Meat Sci 78:170-175. https://doi.org/10.1016/j.meatsci.2007.05.029
  18. Soumillion A, Vergouwe M, Erkens J, te Pas M, Rettenberger G, Lenstra J. 1997. Assignment of the porcine loci for MYOD1 to chromosome 2 and MYF5 to chromosome 5. Anim Genet 28:37-38. https://doi.org/10.1111/j.1365-2052.1997.00027.x
  19. Spassov VZ, Yan L. 2013. pH-selective mutagenesis of protein-protein interfaces: In silico design of therapeutic antibodies with prolonged half-life. Proteins: Struct, Funct, Bioinf 81:704-714. https://doi.org/10.1002/prot.24230
  20. te Pas MFW, Visscher AH. 1994. Genetic regulation of meat production by embryonic muscle formation-A review. J Anim Breed Genet 111:404-412. https://doi.org/10.1111/j.1439-0388.1994.tb00477.x
  21. te Pas M, Harders F, Soumillion A, Born L, Buist W. 1999. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mamm Genome 10:123-127. https://doi.org/10.1007/s003359900956
  22. Verner J, Humpolicek P, Knoll A. 2007. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J Anim Breed Genet 124:81-85. https://doi.org/10.1111/j.1439-0388.2007.00639.x
  23. Winter B, Braun T, Arnold HH. 1992. Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO J 11:1843-1855. https://doi.org/10.1002/j.1460-2075.1992.tb05236.x

Cited by

  1. Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle vol.112, pp.4, 2018, https://doi.org/10.1016/j.ygeno.2020.03.018