DOI QR코드

DOI QR Code

Prevalence of Clostridium difficile Isolated from Beef and Chicken Meat Products in Turkey

  • Ersoz, Seyma Seniz (Food Engineering Department, Engineering Faculty, Sakarya University) ;
  • Cosansu, Serap (Food Engineering Department, Engineering Faculty, Sakarya University)
  • Received : 2018.03.23
  • Accepted : 2018.07.10
  • Published : 2018.08.31

Abstract

The concern about the possibility of food can be a vehicle for the transmission of Clostridium difficile to humans has been raised recently due to the similarities among the strains isolated from patients, foods and food animals. In this study, therefore, the prevalence of C. difficile was investigated in beef and chicken meat products collected from 57 different butcher shops, markets and fast food restaurants in Sakarya province of Turkey. Two out of 101 samples (1.98%) was positive for C. difficile indicating a very low prevalence. The pathogen was isolated from an uncooked meatball sample and a cooked meat $d{\ddot{o}}ner$ sample, whereas not detected in chicken meat samples. The meatball isolate was resistant to vancomycin and tetracycline, while the cooked meat $d{\ddot{o}}ner$ isolate was resistant to vancomycin and metronidazole. Both isolates were sensitive to moxifloxacin and clindamycin. Toxins A and B were not detected. This study reveals the presence of C. difficile in further processed beef products in Turkey.

Keywords

References

  1. Abdel-Glil MY, Thomas P, Schmoock G, Abou-El-Azm K, Wieler LH, Neubauer H, Seyboldt C. 2018. Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe 51:21-25. https://doi.org/10.1016/j.anaerobe.2018.03.009
  2. Bakri M. 2018. Prevalence of Clostridium difficile in raw cow, sheep, and goat meat in Jazan, Saudi Arabia. Saudi J Biol Sci 25:783-785. https://doi.org/10.1016/j.sjbs.2016.07.002
  3. Bauer MP, Kuijper EJ, Van Dissel JT. 2009. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect 15:1067-1079. https://doi.org/10.1111/j.1469-0691.2009.03099.x
  4. Clinical and Laboratory Standards Institute (CLSI). 2018. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA, USA Clinical and Laboratory Standards Institute. Available from: http://www.facm.ucl.ac.be/intranet/CLSI/CLSI-2018-M100-S28-unlocked.pdf. Accessed at July 7, 2018.
  5. Curry SR, Marsh JW, Schlackman JL, Harrison LH. 2012. Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania. Appl Environ Microbiol 78:4183-4186. https://doi.org/10.1128/AEM.00842-12
  6. Dawson LF, Valiente E, Wren BW. 2009. Clostridium difficile ˗ A continually evolving and problematic pathogen. Infect Genet Evol 9:1410-1417. https://doi.org/10.1016/j.meegid.2009.06.005
  7. De Boer E, Zwartkruis-Nahuis A, Heuvelink AE, Harmanus C, Kuijper EJ. 2011. Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 144:561-564. https://doi.org/10.1016/j.ijfoodmicro.2010.11.007
  8. Deng K, Plaza-Garrido A, Torres JA, Paredes-Sabja D. 2015. Survival of Clostridium difficile spores at low temperatures. Food Microbiol 46:218-221. https://doi.org/10.1016/j.fm.2014.07.022
  9. Esfandiari Z, Jalali M, Ezzatpanah H, Weese JS, Chamani M. 2014a. Prevalence and characterization of Clostridium difficile in beef and mutton meats of Isfahan region, Iran. Jundishapur J Microbiol 7:e16771.
  10. Esfandiari Z, Weese JS, Ezzatpanah H, Chamani M, Shoaei P, Yaran M, Ataei B, Maracy MR, Ansariyan A, Ebrahimi F, Jalali M. 2015. Isolation and characterization of Clostridium difficile in farm animals from slaughterhouse to retail stage in Isfahan, Iran. Foodborne Pathog Dis 12:864-866. https://doi.org/10.1089/fpd.2014.1910
  11. Esfandiari Z, Weese S, Ezzatpanah H, Jalali M, Chamani M. 2014b. Occurrence of Clostridium difficile in seasoned hamburgers and seven processing plants in Iran. BMC Microbiol 14:283. https://doi.org/10.1186/s12866-014-0283-6
  12. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2018. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1, 2018. Available from: http://www.eucast.org/clinical_breakpoints/. Accessed at July 7, 2018.
  13. Fedorko DP, Williams EC. 1997. Use of cycloserine-cefoxitin-fructose agar and L-proline-aminopeptidase (PRO Discs) in the rapid identification of Clostridium difficile. J Clin Microbiol 35:1258-1259.
  14. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, Wilcox MH. 2015. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21:248.e9-248.e16. https://doi.org/10.1016/j.cmi.2014.09.017
  15. Gould LH, Limbago B. 2010. Clostridium difficile in food and domestic animals: A new foodborne pathogen? Clin Infect Dis 51:577-582. https://doi.org/10.1086/655692
  16. Guran HS, Ilhak OI. 2015. Clostridium difficile in retail chicken meat parts and liver in the Eastern Region of Turkey. J Verbrauch Lebensm 10:359-364. https://doi.org/10.1007/s00003-015-0950-z
  17. Huang H, Weintraub A, Fang H, Nord CE. 2009. Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Ag 34:516-522. https://doi.org/10.1016/j.ijantimicag.2009.09.012
  18. Jobstl M, Heuberger S, Indra A, Nepf R, Kofer J, Wagner M. 2010. Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172-175. https://doi.org/10.1016/j.ijfoodmicro.2009.12.022
  19. Kalchayanand N, Arthur TM, Bosilevac JM, Brichta-Harhay DM, Shackelford SD, Wells JE, Wheeler TL, Koohmaraie M. 2013. Isolation and characterization of Clostridium difficile associated with beef cattle and commercially produced ground beef. J Food Prot 76:256-264. https://doi.org/10.4315/0362-028X.JFP-12-261
  20. Kayisoglu S, Yilmaz I, Demirci M, Yetim H. 2003. Chemical composition and microbiological quality of the doner kebabs sold in Tekirdag market. Food Control 14:469-474. https://doi.org/10.1016/S0956-7135(02)00103-2
  21. Kilic B. 2009. Current trends in traditional Turkish meat products and cuisine. LWT-Food Sci Technol 42:1581-1589. https://doi.org/10.1016/j.lwt.2009.05.016
  22. Kouassi KA, Dadie AT, N’Guessan KF, Dje KM, Loukou YG. 2014. Clostridium perfringens and Clostridium difficile in cooked beef sold in Cote d’lvoire and their antimicrobial susceptibility. Anaerobe 28:90-94. https://doi.org/10.1016/j.anaerobe.2014.05.012
  23. Kuehne SA, Cartman ST, Minton NP. 2011. Both, toxin A and toxin B, are important in Clostridium difficile infection. Gut Microbes 2:252-255. https://doi.org/10.4161/gmic.2.4.16109
  24. Libby DB, Bearman G. 2009. Bacteremia due to Clostridium difficile ˗ Review of the literature. Int J Infec Dis 13:e305-e309. https://doi.org/10.1016/j.ijid.2009.01.014
  25. Limbago B, Thompson AD, Greene SA, MacCannell D, MacGowan CE, Jolbitado B, Hardin HD, Estes SR, Weese JS, Songer JG, Gould LH. 2012. Development of a consensus method for culture of Clostridium difficile from meat and its use in a survey of U.S. retail meats. Food Microbiol 32:448-451. https://doi.org/10.1016/j.fm.2012.08.005
  26. Lund BM, Peck MW. 2015. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 12:177-182. https://doi.org/10.1089/fpd.2014.1842
  27. Mooyottu S, Flock G, Kollanoor-Johny A, Upadhyaya I, Jayarao B, Venkitanarayanan K. 2015. Characterization of a multidrug resistant C. difficile meat isolate. Int J Food Microbiol 192:111-116. https://doi.org/10.1016/j.ijfoodmicro.2014.10.002
  28. Quesada-Gomez C, Mulvey MR, Vargas P, Gamboa-Coronado MDM, Rodriguez C, Rodriguez-Cavillini E. 2013. Isolation of a toxigenic and clinical genotype of Clostridium difficile in retail meats in Costa Rica. J Food Prot 76:348-351. https://doi.org/10.4315/0362-028X.JFP-12-169
  29. Rodriguez C, Avesani V, Van Broeck J, Taminiau B, Delmee M, Daube G. 2013. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol 166:256-262. https://doi.org/10.1016/j.ijfoodmicro.2013.07.017
  30. Rodriguez C, Taminiau B, Avesani V, Van Broeck J, Delmee M, Daube G. 2014. Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol 42:166-171. https://doi.org/10.1016/j.fm.2014.03.021
  31. Rodriguez-Palacios A, Koohmaraie M, LeJeune JT. 2011. Prevalence, enumeration, and antimicrobial agent resistance of Clostridium difficile in cattle at harvest in the United States. J Food Prot 74:1618-1624. https://doi.org/10.4315/0362-028X.JFP-11-141
  32. Rodriguez-Palacios A, Reid-Smith RJ, Staempfli HR, Weese JS. 2010. Clostridium difficile survives minimal temperature recommended for cooking ground meats. Anaerobe 16:540-542. https://doi.org/10.1016/j.anaerobe.2010.05.004
  33. Rodriguez-Palacios A, Reid-Smith RJ, Staempfli HR, Daignault D, Janecko N, Avery BP, Martin H, Thompson AD, Mcdonald LC, Limbago B, Weese JC. 2009. Possible seasonality of Clostridium difficile in retail meat, Canada. Emerg Infect Dis 15:802-805. https://doi.org/10.3201/eid1505.081084
  34. Songer JG, Trinh HT, Killgore GE, Thompson AD, McDonald LC, Limbago BM. 2009. Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis 15:819-821. https://doi.org/10.3201/eid1505.081071
  35. Tenover FC, Tickler IA, Persing DH. 2012. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother 56:2929-2932. https://doi.org/10.1128/AAC.00220-12
  36. Varshney JB, Very KJ, Williams JL, Hegarty JP, Stewart DB, Lumadue J, Venkitanarayanan, K, Jayarao BM. 2014. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis 11:822-829. https://doi.org/10.1089/fpd.2014.1790
  37. Visser M, Sepehrim S, Olson N, Du T, Mulvey MR, Alfa MJ. 2012. Detection of Clostridium difficile in retail ground meat products in Manitoba. Can J Infec Dis Med Microbiol 23:28-30.
  38. Weese JS. 2010. Clostridium difficile in food-Innocent bystander or serious threat? Clin Microbiol Infect 16:3-10.
  39. Weese JS, Avery BP, Rousseau J, Reid-Smith RJ. 2009. Detection and enumeration of Clostridium difficile spores in retail beef and pork. Appl Environ Microbiol 75:5009-5011. https://doi.org/10.1128/AEM.00480-09
  40. Weese JS, Reid-Smith RJ, Avery BP, Rousseau J. 2010. Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol 50:362-365. https://doi.org/10.1111/j.1472-765X.2010.02802.x
  41. Weese JS, Rousseau J, Deckert A, Gow S, Reid-Smith RJ. 2011. Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs. BMC Vet Res 7:41. https://doi.org/10.1186/1746-6148-7-41
  42. Wong SSY, Woo PCY, Luk WK, Yuen KY. 1999. Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and Etest. Diagn Microbiol Infect Dis 34:1-6. https://doi.org/10.1016/S0732-8893(98)00139-4

Cited by

  1. Detection, Characterization and Antibiotic Susceptibility of Clostridioides (Clostridium) difficile in Meat Products vol.40, pp.4, 2018, https://doi.org/10.5851/kosfa.2020.e34
  2. Characterisation and antibiotic susceptibility profile of Clostridioides (Clostridium) difficile isolated from chicken carcasses vol.64, pp.3, 2018, https://doi.org/10.2478/jvetres-2020-0052
  3. Clostridioides difficile in Non-hospital Sources (Animals, Food, and Environment) in Asian Countries: A Literature Review vol.14, pp.3, 2018, https://doi.org/10.5812/jjm.115347
  4. Raw Animal Meats as Potential Sources of Clostridium difficile in Al-Jouf, Saudi Arabia vol.41, pp.5, 2018, https://doi.org/10.5851/kosfa.2021.e44