DOI QR코드

DOI QR Code

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model

NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정

  • Kim, Mingyu (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Myung, Jaewook (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Jeongrae (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 김민규 (한국항공대학교 항공우주 및 기계공학과) ;
  • 명재욱 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김정래 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2018.07.26
  • Accepted : 2018.08.23
  • Published : 2018.08.31

Abstract

For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.

단일주파수 수신기를 사용하는 저궤도위성의 전리층 보정을 수행하기 위해선 지상기반 전리층 보정 모델에 변환 계수를 적용해야 한다. 전리층 변환 계수는 3차원 전리층 분포를 제공하는 NeQuick 모델을 이용하여 계산할 수 있다. 본 연구에서는 2015년 한 해 NeQuick G 모델을 이용하여 전리층 변환 계수를 계산한 후, 저궤도위성 관측값과 IGS 지상 전리층지도의 비율로 계산된 전리층 변환계수와 비교하였다. NeQuick G의 전리층 변환 계수를 IGS 전리층지도에 적용한 후, 저궤도위성에서 관측된 전리층 지연과 비교하여 정확도를 분석하였다. 또한, NeQuick G 변환 계수를 IGS 전리층 지도에 적용하여 계산한 전리층 지연 오차와 NeQuick G 모델만을 이용하여 계산한 전리층 지연 오차를 비교분석하였다. 추가적으로 위도 및 태양활동에 따른 전리층 지연오차를 분석하였다. 2015년 한 해 NeQuick G 모델로 계산된 평균 전리층 변환 계수는 0.269로 나타났으며, IGS 전리층 지도에 NeQuick G 변환 계수를 적용한 전리층 지연 오차는 NeQuick G 모델만으로 계산된 전리층 지연 오차보다 23.7% 더 작았다.

Keywords

References

  1. J. Kim and Y. J. Lee, “Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites,” GPS Solutions, Vol. 19, No. 3, pp. 423-431, 2015. https://doi.org/10.1007/s10291-014-0402-8
  2. International GNSS Service. IGS Products [Internet]. Available: http://www.igs.org/products.
  3. J. Kim and M. Kim, “Determination of ionospheric delay scale factor for low earth orbit using the international reference ionosphere model,” Korean Journal of Remote Sensing, Vol. 30, No. 2, pp. 331-339, 2014. https://doi.org/10.7780/kjrs.2014.30.2.14
  4. O. Montenbruck and E. Gill, “Ionospheric correction for GPS tracking of LEO satellites,” Journal of Navigation, Vol. 55, No. 2, pp. 293-304, 2002. https://doi.org/10.1017/S0373463302001789
  5. J. Zhong, J. Lei, X. Dou, and X. Yue, “Assessment of vertical TEC mapping functions for space-based GNSS observations,” GPS Solutions, Vol. 20, No. 3, pp. 353-362, 2016. https://doi.org/10.1007/s10291-015-0444-6
  6. D. Peng and B. Wu, “The application of GIM in precise orbit determination for LEO satellites with single-frequency GPS measurements,” Chinese Astronomy and Astrophysics, Vol. 36, No. 4, pp. 366-381, 2012. https://doi.org/10.1016/j.chinastron.2012.10.002
  7. A. J. Mannucci, B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge, “A global mapping techniques for GPS-derived ionospheric total electron content measurements,” Radio Science, Vol. 33, No. 3, pp. 565-582, 1998. https://doi.org/10.1029/97RS02707
  8. H. Bock, A. Jaggi, R. Dach, S. Schaer, and G. Beutler, “GPS single-frequency orbit determination for low Earth orbiting satellites,” Advances in Space Research, Vol. 43, No. 5, pp. 783-791, 2009. https://doi.org/10.1016/j.asr.2008.12.003
  9. X. Yang, J. Li, and S. Zhang, "Ionospheric correction for spaceborne single-frequency GPS based on single layer model." Journal of Earth System Science, Vol. 123, No. 4, pp. 767-778, 2014. https://doi.org/10.1007/s12040-014-0442-z
  10. B. Bidaine and R. Warnant, "Ionosphere modelling for Galileo single frequency users: Illustration of the combination of the NeQuick model and GNSS data ingestion. Advances in Space Research, Vol. 47, No. 2, pp. 312-322, 2011. https://doi.org/10.1016/j.asr.2010.09.001
  11. C. M. Lee, K. D. Park, and S. Lee, "Comparison of real-time ionospheric delay correction models for single-frequency GNSS receivers: Klobuchar model and NeQuick model. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 28, No. 4, pp. 413-420, 2010.
  12. S. M. Radicella, “The NeQuick model genesis, uses and evolution,” Annals of Geophysics, Vol. 52, No. 3/4, pp. 417-422, 2009.
  13. European Union, European GNSS (Galileo) open service-Ionospheric correction algorithm for Galileo single frequency users, issue 1.2.
  14. A. Leick, GPS Satellite Surveying, 2rd ed. New Jersey, NJ: John Wiley & Sons, 1994.
  15. M. W. Lear, GPS navigation for low-Earth orbiting vehicles, NASA 87-FM-2, JSC-32031, rev. 1, Lyndon B. Johnson Space Center, Houston, Texas.

Cited by

  1. Accuracy Analysis of Ionospheric Delay of Low Earth Orbit Satellites by using NeQuick G Model vol.10, pp.4, 2021, https://doi.org/10.11003/jpnt.2021.10.4.363