DOI QR코드

DOI QR Code

Detection of mcr-1 Plasmids in Enterobacteriaceae Isolates From Human Specimens: Comparison With Those in Escherichia coli Isolates From Livestock in Korea

  • Yoon, Eun-Jeong (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Hong, Jun Sung (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Yang, Ji Woo (National Institute of Health, Centers for Disease Control and Prevention) ;
  • Lee, Kwang Jun (National Institute of Health, Centers for Disease Control and Prevention) ;
  • Lee, Hyukmin (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Jeong, Seok Hoon (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine)
  • Received : 2017.10.15
  • Accepted : 2018.06.27
  • Published : 2018.11.01

Abstract

Background: The emerging mobile colistin resistance gene, mcr-1, is an ongoing worldwide concern and an evaluation of clinical isolates harboring this gene is required in Korea. We investigated mcr-1-possessing Enterobacteriaceae among Enterobacteriaceae strains isolated in Korea, and compared the genetic details of the plasmids with those in Escherichia coli isolates from livestock. Methods: Among 9,396 Enterobacteriaceae clinical isolates collected between 2010 and 2015, 1,347 (14.3%) strains were resistant to colistin and those were screened for mcr-1 by PCR. Colistin minimum inhibitory concentrations (MICs) were determined by microdilution, and conjugal transfer of the mcr-1-harboring plasmids was assessed by direct mating. Whole genomes of three mcr-1-positive Enterobacteriaceae clinical isolates and 11 livestock-origin mcr-1-positive E. coli isolates were sequenced. Results: Two E. coli and one Enterobacter aerogenes clinical isolates carried carried IncI2 plasmids harboring mcr-1, which conferred colistin resistance (E. coli MIC, 4 mg/L; E. aerogenes MIC, 32 mg/L). The strains possessed the complete conjugal machinery except for E. aerogenes harboring a truncated prepilin peptidase. The E. coli plasmid transferred more efficiently to E. coli than to Klebsiella pneumoniae or Enterobacter cloacae recipients. Among the three bacterial hosts, the colistin MIC was the highest for E. coli owing to the higher mcr-1-plasmid copy number and mcr-1 expression levels. Ten mcr-1-positive chicken-origin E. coli strains also possessed mcr-1-harboring IncI2 plasmids closely related to that in the clinical E. aerogenes isolate, and the remaining one porcine-origin E. coli possessed an mcr-1-harboring IncX4 plasmid. Conclusions: mcr-1-harboring IncI2 plasmids were identified in clinical Enterobacteriaceae isolates. These plasmids were closely associated with those in chicken-origin E. coli strains in Korea, supporting the concept of mcr-1 dissemination between humans and livestock.

Keywords

Acknowledgement

Supported by : Korea Centers for Disease Control and Prevention

References

  1. Giamarellou H and Poulakou G. Multidrug-resistant gram-negative infections: what are the treatment options? Drugs 2009;69:1879-901. https://doi.org/10.2165/11315690-000000000-00000
  2. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161-8. https://doi.org/10.1016/S1473-3099(15)00424-7
  3. Skov RL and Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 2016;21: 30155. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30155
  4. Di Pilato V, Arena F, Tascini C, Cannatelli A, Henrici De Angelis L, Fortunato S, et al. mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother 2016;60:5612-5. https://doi.org/10.1128/AAC.01075-16
  5. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 2016;21: 30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280
  6. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 2017;8: e00543-17.
  7. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 2017;22:30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589
  8. Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 2016; 16:293. https://doi.org/10.1016/S1473-3099(16)00061-X
  9. von Wintersdorff CJ, Wolffs PF, van Niekerk JM, Beuken E, van Alphen LB, Stobberingh EE, et al. Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J Antimicrob Chemother 2016;71:3416-9. https://doi.org/10.1093/jac/dkw328
  10. Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg 2016;110:377-80. https://doi.org/10.1093/trstmh/trw048
  11. Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog 2016;12: e1005957. https://doi.org/10.1371/journal.ppat.1005957
  12. Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Kasbohrer A, Roesler U, et al. Colistin resistance gene mcr-1 in extended-spectrum beta-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis 2016;16:282-3. https://doi.org/10.1016/S1473-3099(16)00009-8
  13. Snesrud E, Ong AC, Corey B, Kwak YI, Clifford R, Gleeson T, et al. Analysis of Serial Isolates of mcr-1- positive Escherichia coli reveals a highly active ISApl1 transposon. Antimicrob Agents Chemother 2017;61: e00056-17.
  14. Du H, Chen L, Tang YW, Kreiswirth BN. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect Dis 2016;16:287-8. https://doi.org/10.1016/S1473-3099(16)00056-6
  15. Zhang XF, Doi Y, Huang X, Li HY, Zhong LL, Zeng KJ, et al. Possible transmission of mcr-1-harboring Escherichia coli between companion animals and human. Emerg Infect Dis 2016;22:1679-81. https://doi.org/10.3201/eid2209.160464
  16. Yang RS, Feng Y, Lv XY, Duan JH, Chen J, Fang LX, et al. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single muscovy duck (Cairina moschata). Antimicrob Agents Chemother 2016;60:6899-902. https://doi.org/10.1128/AAC.01365-16
  17. Teo JQ, Ong RT, Xia E, Koh TH, Khor CC, Lee SJ, et al. mcr-1 in multidrug-resistant blaKPC-2-producing clinical Enterobacteriaceae isolates in Singapore. Antimicrob Agents Chemother 2016;60:6435-7. https://doi.org/10.1128/AAC.00804-16
  18. Sun J, Li XP, Yang RS, Fang LX, Huo W, Li SM, et al. Complete nucleotide sequence of an IncI2 plasmid coharboring $bla_{CTX-M-55}$ and mcr-1. Antimicrob Agents Chemother 2016;60:5014-7. https://doi.org/10.1128/AAC.00774-16
  19. Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis 2017;17:400-10. https://doi.org/10.1016/S1473-3099(16)30528-X
  20. Moellering RC Jr. NDM-1-a cause for worldwide concern. N Engl J Med 2010;363:2377-9. https://doi.org/10.1056/NEJMp1011715
  21. Lim SK, Kang HY, Lee K, Moon DC, Lee HS, Jung SC. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob Agents Chemother 2016;60: 6991-3. https://doi.org/10.1128/AAC.01472-16
  22. The Joint CLSI- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Polymyxin Breakpoints Working Group. Recommendations for MIC determination of colistin (polymyxin E). Wayne, PA: Clinical and Laboratory Standards Institute. 2016. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/ Recommendations_for_MIC_determination_of_colistin_March_2016.pdf (Updated on Mar 2016).
  23. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal Dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying $bla_{IMP-6}$ and emergence of $bla_{GES-24}$ and $bla_{IMP-10}$ on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother 2016;60: 7216-23.
  24. Poirel L, Kieffer N, Brink A, Coetze J, Jayol A, Nordmann P. Genetic features of MCR-1-producing colistin-resistant Escherichia coli isolates in South Africa. Antimicrob Agents Chemother 2016;60:4394-7. https://doi.org/10.1128/AAC.00444-16
  25. Kim ES, Chong YP, Park SJ, Kim MN, Kim SH, Lee SO, et al. Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea. Diagn Microbiol Infect Dis 2017;89:158-60. https://doi.org/10.1016/j.diagmicrobio.2017.06.020
  26. Fernandes MR, McCulloch JA, Vianello MA, Moura Q, Perez-Chaparro PJ, Esposito F, et al. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli Sequence Type 101 isolate from a human infection in Brazil. Antimicrob Agents Chemother 2016;60:6415-7. https://doi.org/10.1128/AAC.01325-16
  27. Elnahriry SS, Khalifa HO, Soliman AM, Ahmed AM, Hussein AM, Shimamoto T, et al. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob Agents Chemother 2016;60:3249-50. https://doi.org/10.1128/AAC.00269-16
  28. Bradley DE and Coetzee JN. The determination of two morphologically distinct types of pilus by plasmids of incompatibility group I2. J Gen Microbiol 1982;128:1923-6.
  29. Yoshida T, Kim SR, Komano T. Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol 1999;181:2038-43.
  30. Akahane K, Sakai D, Furuya N, Komano T. Analysis of the pilU gene for the prepilin peptidase involved in the biogenesis of type IV pili encoded by plasmid R64. Mol Genet Genomics 2005;273:350-9. https://doi.org/10.1007/s00438-005-1143-8
  31. Komano T, Kim SR, Yoshida T, Nisioka T. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J Mol Biol 1994;243:6-9. https://doi.org/10.1006/jmbi.1994.1625
  32. Sun J, Fang LX, Wu Z, Deng H, Yang RS, Li XP, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci Rep 2017;7:424. https://doi.org/10.1038/s41598-017-00095-x
  33. Yoon EJ, Yang JW, Kim JO, Lee H, Lee KJ, Jeong SH. Carbapenemase-producing Enterobacteriaceae in South Korea: a report from the National Laboratory Surveillance System. Future Microbiol 2018;13:771-83. https://doi.org/10.2217/fmb-2018-0022
  34. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-7. https://doi.org/10.1093/nar/gkh340

Cited by

  1. Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain vol.9, pp.2, 2018, https://doi.org/10.3390/antibiotics9020049
  2. First Report of an Escherichia coli Strain Carrying the Colistin Resistance Determinant mcr-1 from a Dog in South Korea vol.9, pp.11, 2018, https://doi.org/10.3390/antibiotics9110768
  3. Aspirin, sodium benzoate and sodium salicylate reverse resistance to colistin in Enterobacteriaceae and Pseudomonas aeruginosa vol.75, pp.12, 2020, https://doi.org/10.1093/jac/dkaa371
  4. Identification of an extensively drug-resistant Escherichia coli clinical strain harboring mcr-1 and blaNDM-1 in Korea vol.73, pp.12, 2018, https://doi.org/10.1038/s41429-020-0350-1
  5. Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea vol.30, pp.12, 2018, https://doi.org/10.4014/jmb.2007.07008
  6. Comparative Genome Analysis of Livestock and Human Colistin-Resistant Escherichia coli Isolates from the Same Household vol.14, pp.None, 2018, https://doi.org/10.2147/idr.s298120
  7. Mobile Colistin Resistance Gene mcr-1 Detected on an IncI2 Plasmid in Salmonella Typhimurium Sequence Type 19 from a Healthy Pig in South Korea vol.9, pp.2, 2018, https://doi.org/10.3390/microorganisms9020398
  8. Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases vol.10, pp.4, 2018, https://doi.org/10.3390/antibiotics10040467
  9. Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli From Multiple Sectors of the Swine Industry in Korea: A Korean Nationwide Monitoring Progr vol.41, pp.3, 2018, https://doi.org/10.3343/alm.2021.41.3.285
  10. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health vol.799, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.149280