DOI QR코드

DOI QR Code

Backbone NMR Assignments of a Putative p53-binding Domain of the Mitochondrial Hsp40, Tid1

  • Jo, Ku-Sung (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Eun-Hee (Protein Structure Group, Korea Basic Science Institute) ;
  • Kang, Dong-Hoon (College of Pharmacy, Chungbuk National University) ;
  • Ma, Yu-Bin (College of Pharmacy, Chungbuk National University) ;
  • Kim, Ji-Hun (College of Pharmacy, Chungbuk National University) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Received : 2018.08.20
  • Accepted : 2018.09.10
  • Published : 2018.09.20

Abstract

Human Tid1, belonging to the family of the Hsp40/DnaJ, functions as a co-chaperone of cytosolic and mitochondrial Hsp70 proteins. In addition, the conserved J-domain and G/F-rich region of Tid1 has been suggested to interact with the p53 tumor suppressor protein, to translocate it to the mitochondria. Here, backbone NMR assignments were achieved for the putative p53-binding domain of Tid1. The obtained chemical shift information identified five ${\alpha}$-helices including four helices characteristic of J-domain, which are connected to a short ${\alpha}$-helix in the G/F-rich region via a flexible loop region. We expect that this structural information would contribute to our progressing studies to elucidate atomic structure and molecular interaction of the domain with p53.

Keywords

References

  1. A. L. Horwich, Cell 157, 285 (2014) https://doi.org/10.1016/j.cell.2014.03.029
  2. F. U. Hartl, A. Bracher, and M. Hayer-Hartl, Nature 475, 324 (2011) https://doi.org/10.1038/nature10317
  3. M. E. Feder and G. E. Hofmann, Annu. Rev. Physiol. 61, 243 (1999) https://doi.org/10.1146/annurev.physiol.61.1.243
  4. F. U. Hartl, Nature 381, 571 (1996) https://doi.org/10.1038/381571a0
  5. J. R. Glover and S. Lindquist, Cell 94, 73 (1998) https://doi.org/10.1016/S0092-8674(00)81223-4
  6. X. B. Qiu, Y. M. Shao, S. Miao, and L. Wang, Cell. Mol. Life Sci. 63, 2560 (2006) https://doi.org/10.1007/s00018-006-6192-6
  7. M. E. Cheetham and A. J. Caplan, Cell Stress Chaperones 3, 28 (1998) https://doi.org/10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
  8. M. J. Vos, J. Hageman, S. Carra, and H. H. Kampinga, Biochemistry 47, 7001 (2008) https://doi.org/10.1021/bi800639z
  9. H. H. Kampinga, J. Hageman, M. J. Vos, H. Kubota, R. M. Tanguay, E. A. Bruford, M. E. Cheetham, B. Chen, and L. E. Hightower, Cell Stress Chaperones 14, 105 (2009) https://doi.org/10.1007/s12192-008-0068-7
  10. A. Ahmad, A. Bhattacharya, R. A. McDonald, M. Cordes, B. Ellington, E. B. Bertelsen, and E. R. Zuiderweg, Proc. Natl. Acad. Sci. 108, 18966 (2011) https://doi.org/10.1073/pnas.1111220108
  11. F. Hennessy, W. S. Nicoll, R. Zimmermann, M. E. Cheetham, and G. L. Blatch, Protein Sci. 14, 1697 (2005) https://doi.org/10.1110/ps.051406805
  12. P. Bischofberger, W. Han, B. Feifel, H. J. Schonfeld, and P. Christen, J Biol Chem 278, 19044 (2003) https://doi.org/10.1074/jbc.M300922200
  13. B. Lu, N. Garrido, J. N. Spelbrink, and C. K. Suzuki, J. Biol. Chem. 281, 13150 (2006) https://doi.org/10.1074/jbc.M509179200
  14. J. Syken, T. De-Medina, and K. Munger, Proc. Natl. Acad. Sci. 96, 8499 (1999) https://doi.org/10.1073/pnas.96.15.8499
  15. J. Proft, J. Faraji, J. C. Robbins, F. C. Zucchi, X. Zhao, G. A. Metz, and J. E. Braun, PLoS One 6, e26045 (2011) https://doi.org/10.1371/journal.pone.0026045
  16. B. Y. Ahn, D. L. Trinh, L. D. Zajchowski, B. Lee, A. N. Elwi, and S. W. Kim, Oncogene 29, 1155 (2010) https://doi.org/10.1038/onc.2009.413
  17. D. L. Trinh, A. N. Elwi, and S. W. Kim, Oncotarget 1, 396 (2010)
  18. S. Kaul and R. Wadhwa, "Mortalin Biology: Life, Stress and Death" Chap. 14, Springer, New York, 2012
  19. S.-H. Lee, D.-W. Sim, E.-H. Kim, J. H. Kim, and H.-S. Won, J. Korean. Magn. Reson. Soc. 21, 50 (2017) https://doi.org/10.6564/JKMRS.2017.21.2.050
  20. H.-S. Won, S. H. Park, H. E. Kim, B. Hyun, M. Kim, and B. J. Lee, Eur. J. Biochem. 269, 4367 (2002) https://doi.org/10.1046/j.1432-1033.2002.03139.x
  21. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
  22. Y. Shen and A. Bax, J. Biomol. NMR 56, 227 (2013) https://doi.org/10.1007/s10858-013-9741-y
  23. T. Ishida and K. Kinoshita, Nucleic Acids Res. 35, W460 (2007) https://doi.org/10.1093/nar/gkm363
  24. S. P. Mielke and V. V. Krishnan, Prog. Nucl. Magn. Reson. Spectrosc. 54, 141 (2009) https://doi.org/10.1016/j.pnmrs.2008.06.002
  25. T. Asakura, K. Taoka, M. Demura, and M. P. Williamson, J. Biomol. NMR 6, 227 (1995)