DOI QR코드

DOI QR Code

Flipped Learning in Socioscientific Issues Instruction: Its Impact on Middle School Students' Key Competencies and Character Development as Citizens

플립러닝 기반 SSI 수업이 중학생의 과학기술 사회 시민으로서의 역량 및 인성 함양에 미치는 효과

  • Received : 2018.05.07
  • Accepted : 2018.07.23
  • Published : 2018.08.31

Abstract

This study aims to investigate how flipped learning-based socioscientific issue instruction (FL-SSI instruction) affected middle school students' key competencies and character development. Traditional classrooms are constrained in terms of time and resources for exploring the issues and making decision on SSI. To address these concerns, we designed and implemented an SSI instruction adopting flipped learning. Seventy-three 8th graders participated in an SSI program on four topics for over 12 class periods. Two questionnaires were used as a main data source to measure students' key competencies and character development before and after the SSI instruction. In addition, student responses and shared experience from focus group interviews after the instruction were collected and analyzed. The results indicate that the students significantly improved their key competencies and experienced character development after the SSI instruction. The students presented statistically significant improvement in the key competencies (i.e., collaboration, information and technology, critical thinking and problem-solving, and communication skills) and in two out of three factors in character and values as global citizens (social and moral compassion, and socio-scientific accountability). Interview data supports the quantitative results indicating that SSI instruction with a flipped learning strategy provided students in-depth and rich learning opportunities. The students responded that watching web-based videos prior to class enabled them to deeply understand the issue and actively engage in discussion and debate once class began. Furthermore, the resulting gains in available class time deriving from a flipped learning approach allowed the students to examine the issue from diverse perspectives.

본 연구는 플립러닝을 적용한 과학관련 사회쟁점 교수학습(FL-SSI)이 중학생의 시민역량과 인성발달에 미치는 영향을 탐색하는 것을 목적으로 하였다. 플립러닝은 교실 수업 전 교수학습 영상을 제공하여 기초 개념과 문제인식의 기회를 제공하고, 교실 수업에서는 이를 바탕으로 한 토의토론 활동을 진행함으로써 학생들이 보다 역동적이고 협력적으로 수업에 참여할 수 있도록 하는 전략이다. 이에 본 연구에서는 전통적인 SSI 수업에서 보고되는 시간과 정보의 제약이나 토의 토론 진행 등의 어려움을 해결하고자 플립러닝 전략에 기초한 과학관련 사회쟁점 교수학습 프로그램을 개발 및 적용하였다. 본 연구에는 중학교 2학년 학생 73명이 네 가지 주제의 12차시 수업으로 구성된 SSI 교수학습 프로그램에 참여하였다. 학생들은 매 차시 수업 전 교사가 웹에 게시한 동영상을 시청한 후, 본 수업에서는 영상에 대한 이해를 바탕으로 다양한 학생중심 활동에 참여하였다. 학생들은 수업 전후 과학기술 사회의 시민역량과 글로벌 시민으로서 갖추어야 할 인성을 측정하는 검사지에 응답하였으며, 수업 이후 포커스 그룹 면담에 참여함으로써 학생들이 인식한 플립러닝 기반 과학관련 사회쟁점 교수학습의 효과를 살펴보았다. 연구 결과, 플립러닝 기반 SSI 수업에 참여한 학생들의 시민역량과 인성은 수업 후 통계적으로 유의한 향상이 있었다. 특히 학생들은 시민역량의 네 영역(협업능력, 정보기술 및 미디어 활용능력, 비판적 사고와 문제해결능력, 의사소통능력) 모두에서 통계적으로 유의한 향상이 있었으며, 인성의 세 영역 중 두 영역(사회도덕적 공감, 과학관련 사회쟁점에 대한 책무성) 영역에서 유의한 향상이 있었다. 포커스 그룹면담 결과 또한 학생들이 SSI 수업에 플립러닝을 적용한 효과를 긍정적으로 인식하였음을 뒷받침하였다. 학생들은 플립러닝 전략을 통해 SSI 문제 상황에 대한 이해를 높였으며, 자료탐색과 의사결정의 시간을 절약함으로써 교실 수업 시간을 SSI 문제 상황을 해결하는 데 온전하게 활용하였다. 또한 SSI 문제를 둘러싼 다양한 관점에 대해 이해할 수 있는 충분한 기회를 가질 수 있었다. 본 연구는 플립러닝 전략이 기존의 SSI 수업에서의 어려움을 보완하고 개선함으로써, SSI 수업을 효과적으로 운영할 수 있는 한 방안이 될 수 있음을 보여준다.

Keywords

References

  1. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  2. Bae, J., Kim, J., Kim, E., & So, K. (2015). The effect of elementary free inquiry lessons utilizing flipped learning with smart devices on the elementary students’ digital literacy, 21st century skills and scientific attitude. Journal of Korean Elementary Science Education, 34(4), 476-485. https://doi.org/10.15267/keses.2015.34.4.476
  3. Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Oregon: International Society for Technology in Education.
  4. Bowers, C. (1999). Changing the dominant cultural perspective in education. In G. A. Smith & D. R. Williams (Eds.), Ecological education in action: On weaving education, culture, and the environment (pp. 161-178). Albany, NY: State University of New York Press.
  5. Bryce, T., & Gray, D. (2004). Tough acts to follow: The challenges to science teachers presented by biotechnological progress. International Journal of Science Education, 26(6), 717-733. https://doi.org/10.1080/0950069032000138833
  6. Chang, H. S., &Lee, H. J. (2010). College students’ decision-making tendencies in the context of socioscientific issues (SSI). Journal of the Korean Association for Science Education, 30(7), 887-900.
  7. Choi, K., Lee, H., Shin, N., Kim, S. W., & Krajcik, J. (2011). Reconceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670-697. https://doi.org/10.1002/tea.20424
  8. Chung, Y., Yoo, J., Kim, S. W., Lee, H., & Zeidler, D. L. (2016). Enhancing student’s communication skills in the science classroom through socioscientific issues. International Journal of Science and Mathematics Education, 14(1),1-27.
  9. Colucci-Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227-252. https://doi.org/10.1002/sce.20109
  10. Dreyfus, A., & Roth, Z. (1991). Twelfth-grade biology pupils’ opinions on interventions of man in nature: Agreement, indifference and ambivalence. Journal of Research in Science Teaching, 28(1),81-95. https://doi.org/10.1002/tea.3660280108
  11. Evagorou, M., Jimenez-Aleixandre, M. P., & Osborne, J. (2012). ‘Should we kill the grey squirrels?’A study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401-428. https://doi.org/10.1080/09500693.2011.619211
  12. Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279-296. https://doi.org/10.1080/09500690701787909
  13. Grace, M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24(11), 1157-1169. https://doi.org/10.1080/09500690210134848
  14. Gray, D. S., & Bryce, T. (2006). Socio-scientific issues in science education: Implications for the professional development of teachers. Cambridge Journal of Education, 36(2), 171-192. https://doi.org/10.1080/03057640600718489
  15. Heo, H., Lim, K., Seo, J., & Kim, Y. (2011). Developing 21st century teaching and learning activities for supporting future school 1: Modeling 21st century learner competencies and teacher competencies (KR 2011-2). Korea Education and Research Information Service.
  16. Hodson, D. (1999). Going beyond cultural pluralism: Science education for sociopolitical action. Science Education, 83(6), 775-796. https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<775::AID-SCE8>3.0.CO;2-8
  17. Hogan, K. (2002). Small groups’ ecological reasoning while making an environmental management decision. Journal of Research in Science Teaching, 39(4), 341-368. https://doi.org/10.1002/tea.10025
  18. Kim, J., Ko, Y., & Lee, H. (2016). Effects of socioscientific issues instruction on elementary school students’ character and values as a global citizens. The Journal of Elementary Education, 29(3), 1-25.
  19. Kim, N., Chun, B., & Choi, J. (2014). A case study of flipped learning at college: Focused on effects of motivation and self-efficacy. Journal of Educational Technology, 30(3), 467-492. https://doi.org/10.17232/KSET.30.3.467
  20. Kim, S., Kim, H., Lee, K., & Lee, S. (2000). Focus group method. Seoul: Hyunmoon.
  21. Ko, Y., & Lee, H. (2017). Comparison of the effects of socioscientific issues instruction on promoting college students’ character and values: Based on idiocentrism and allocentrism. Journal of the Korean Association for Science Education, 37(3), 395-405. https://doi.org/10.14697/JKASE.2017.37.3.395
  22. Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. https://doi.org/10.1002/sce.1011
  23. Korea Foundation for the Advancement of Science & Creativity[KOFAC]. (2010). A Study on creativity and character education for fostering talented person to practice caring and sharing. Seoul: KOFAC.
  24. Lee, M. (2014). Signification of Flipped classroom by sociology of classroom: Focusing on the experience of teachers. Korean Journal of Sociology of Education, 24(2), 181-207.
  25. Lee, H., Abd-El-Khalick, F., & Choi, K. (2006). Korean science teachers’ perceptions of the introduction of socioscientific issues into the science curriculum. Canadian Journal of Science, Mathematics, and Technology Education, 6(2), 97-117.
  26. Lee, H., & Chang, H. (2010). Exploration of experienced science teachers’personal practical knowledge of teaching socioscientific issues (SSI). Journal of The Korean Association For Science Education, 30(3), 353-365.
  27. Lee, H., Chang, H., Choi, K., Kim, S., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers’ moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925-953. https://doi.org/10.1080/09500693.2011.625505
  28. Lee, H., Choi, Y., & Ko, Y. (2014). Designing collective intelligence-based instructional models for teaching socioscientific issues. Journal of the Korean Association for Science Education, 34(6), 523-534. https://doi.org/10.14697/jkase.2014.34.6.0523
  29. Lee, H., Choi, Y., & Ko, Y. (2015). Effects of collective intelligence-based SSI instruction on promoting middle school students’ key competencies as citizens. Journal of the Korean Association for Science Education, 35(3), 431-442. https://doi.org/10.14697/jkase.2015.35.3.0431
  30. Lee, H., Yoo, J., Choi, K., Kim, S.-W., Krajcik, J. S., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35(12), 2079-2113. https://doi.org/10.1080/09500693.2012.749546
  31. Levinson, R. (2004). Teaching bioethics in science: Crossing a bridge too far?. Canadian Journal of Math, Science &Technology Education, 4(3), 353-369. https://doi.org/10.1080/14926150409556619
  32. Ministry of Education (2015). Korea national curriculum standards (2015-74). Sejong: Ministry of Education.
  33. Mun, K., Lee, H., Kim, S. W., Choi, K., Choi, S. Y., & Krajcik, J. S. (2015). Cross-cultural comparison of perceptions on the global scientific literacy with Australian, Chinese, and Korean middle school students. International Journal of Science and Mathematics Education, 13(2), 437-465. https://doi.org/10.1007/s10763-013-9492-y
  34. Partnership for the 21st Century Skills [P21]. (2009). A framework for 21st century learning. Washington, DC: P21.
  35. Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: Teaching socio-scientific issues. London: Open University Press.
  36. Rivero, V. (2013). Flipping out: A new model to reach all students all ways. Internet@Schools, 20(1), 14-16.
  37. Roth, W. M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88(2), 263-294. https://doi.org/10.1002/sce.10113
  38. Ruiz, P. O., & Vallejos, R. M. (1999). The role of compassion in moral education. Journal of Moral Education, 28(1), 5-17. https://doi.org/10.1080/030572499103278
  39. Sadler, T. D. (2004a). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. https://doi.org/10.1002/tea.20009
  40. Sadler, T. D. (2004b). Moral sensitivity and its contribution to the resolution of socio-scientific issues. Journal of Moral Education, 33(3), 339-358. https://doi.org/10.1080/0305724042000733091
  41. Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. https://doi.org/10.1002/sce.20023
  42. Smith, G. A., & Williams, D. R. (1999). Ecological education in action: On weaving education, culture, and the environment. Albany, NY: State University of New York Press.
  43. Sperling, E., & Bencze, J. L. (2010). “More than particle theory”: Citizenship through school science. Canadian Journal of Science, Mathematics and Technology Education, 10(3), 255-266.
  44. Stern, P.C., Dietz, T., & Kalof, L. (1993). Value orientations, gender, and environmental concern. Environment & Behavior, 25, 322-348. https://doi.org/10.1177/0013916593255002
  45. The Ontario Public Service (2016). 21st century competencies: Foundation document for discussion. Phase 1: Towards defining 21st century competencies for Ontario. Ontario, Canada: Queen's Printer for Ontario.
  46. Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. San Francisco, CA: Jossey-Bass.
  47. Zeidler, D. L., &Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. https://doi.org/10.1007/BF03173684
  48. Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74-101. https://doi.org/10.1002/tea.20281
  49. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
  50. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343-367. https://doi.org/10.1002/sce.10025