DOI QR코드

DOI QR Code

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar

고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의

  • Han, Dong-Gyun (Department of Marine Sciences and Convergence Engineering, Hanyang University) ;
  • Seo, Him Chan (Department of Marine Sciences and Convergence Engineering, Hanyang University) ;
  • Choi, Jee Woong (Department of Marine Sciences and Convergence Engineering, Hanyang University) ;
  • Lee, Moonjin (Korea Research Institute of Ships & Ocean Engineering)
  • 한동균 (한양대학교 해양융합공학과) ;
  • 서힘찬 (한양대학교 해양융합공학과) ;
  • 최지웅 (한양대학교 해양융합공학과) ;
  • 이문진 (선박해양플랜트연구소 해양안전환경연구부)
  • Received : 2018.04.06
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

위험유해물질은 해양에 유입되었을 때 인간의 건강 및 해양생태계에 막대한 영향을 미치는 물질로 정의된다. 최근 선박을 이용한 물동량이 증가되면서 위험유해물질 누출사고의 발생비율도 증가되는 추세이다. 이에 따라 위험유해물질 누출사고 대응기술개발의 관점에서 해저에 침적되는 물질들의 방제 및 모니터링 연구가 수행되어야 한다. 본 논문에서는 저층 침적 위험유해물질의 음향 탐지 가능성을 확인하기 위해 저층 침적 위험유해물질 대체물질의 반사손실 측정 실험이 수행되었다. 위험유해물질로 구분되는 클로로폼의 위험성을 고려하여 클로로폼과 임피던스가 유사한 피마자유가 대체물질로 사용되었으며, 200 kHz 고주파 신호를 송신하여 물과 피마자유 경계면에서 발생되는 반사손실을 측정하였다. 그리고 물과 피마자유의 임피던스를 측정 및 조사하여 반사계수를 모의하고 모의된 반사손실이 측정값과 유사함을 확인하였다. 또한 저층 침적 위험유해물질로 분류되는 클로로폼의 반사손실을 모의하고 모의 결과가 다양한 해저면 구성성분의 반사손실 모의결과와 차이를 나타냄으로써 해저면과 구분되는 저층 침적 위험유해물질의 음향 탐지 가능성을 예측하였다.

Keywords

References

  1. API(2016), American Petroleum Institute, Sunken oil detection and recovery, Technical Report 1154-1.
  2. Grosso, V. A. D. and C. W. Mader(1972), Speed of sound in pure water, The Journal of the Acoustical Society of America, Vol. 52, No. 5, pp. 1442-1446. https://doi.org/10.1121/1.1913258
  3. ITOPF(2014), The International Tanker Owners Pollution Federation Limited, Response to marine chemical incident, Technical Information Paper.
  4. Jensen, F., W. Kuperman, M. Porter and H. Schmidt(1993), Computational Ocean Acoustics, American Institute of Physics, New York, pp. 40-46.
  5. Kinsler, L. E., A. R. Frey, A. B. Coppens and J. V. Sanders(2000), Fundamentals of acoustics, 4th edition, Wiley, New York, pp. 526-528.
  6. Kannappan, V., R. J. Santhi and E. J. P. Malar(2002), Ultrasonic studies on charge transfer complexes of cyclo alkanones with chloroform in n-Hexane solution, Physics and Chemistry of Liquids, Vol. 40, No. 4, pp. 507-525. https://doi.org/10.1080/00319100290010437
  7. Lee, M. and S. Oh(2014), Development of response scenario for a simulated HNS spill incident, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 6, pp. 677-684. https://doi.org/10.7837/kosomes.2014.20.6.677
  8. Madsen, M. N.(2007), Analyses of survey, modeling and remote sensing techniques for Monitoring and Assessment of environmental impacts of submerged oil during oil spill accidents final report, ASMA Final Report.
  9. Meyer, R. A., T. Oaks, L. F. Marx and J. E. Brugger(1983), Method and apparatus for detection of insoluble sinking pollutants, United States Patent No. 4,410,966.
  10. Park, M. O., H. -S. Park, T. Kim, S. Oh and M. Lee(2016), A study on the development of HNS database for response system of marine spill accident in Korea, Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 1, pp. 52-58. https://doi.org/10.7837/kosomes.2016.22.1.052
  11. Parthiot, F., E. de. Nanteuil, F. Merlin, B. Zerr, Y. Guedes, X. Lurton, J.-M. Augustin, P. Cervenka, J. Marchal, J. P. Sessarego and R. K. Hansen(2004), Sonar detection and monitoring of sunken heavy fuel oil on the seafloor, Interspill 2004 Proceeding. No. 465.
  12. Potter, M. C., D. C. Wiggert and B. H. Ramadan(2016), SI Mechanics of Fluids, 4th edition, CENGAGE Learning, p. 595.
  13. Timme, R. W.(1972). Sound speed of castor oil, The Journal of the Acoustical Society of America, Vol. 52, No. 3, pp. 989-992. https://doi.org/10.1121/1.1913205
  14. Uchida, N.(1968), Elastooptic Coefficient of Liquids Determined by Ultrasonic Light Diffraction Method, Japanese Journal of Applied Physics, Vol. 7, No. 10, pp. 1259-1266. https://doi.org/10.1143/JJAP.7.1259

Cited by

  1. Measurements of Normal Incidence Reflection Loss as a Function of Temperature at the Water-Castor Oil Interface vol.19, pp.15, 2018, https://doi.org/10.3390/s19153289