DOI QR코드

DOI QR Code

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun (Integrated Energy Center for Fostering Global Creative Researcher, Sungkyunkwan University) ;
  • Kim, Yunok (Department of Energy Science, Sungkyunkwan University) ;
  • Ahn, Chi-Yeong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Cho, Yong-Hun (Division of Energy Engineering, Kangwon National University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2018.04.09
  • Accepted : 2018.04.13
  • Published : 2018.09.30

Abstract

Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.

Keywords

References

  1. L. N. Nguyen, F. I. Hai, J. Kang, W. E. Price and L. D. Nghiem, J. Environ. Manage., 2013, 119, 173-181. https://doi.org/10.1016/j.jenvman.2013.01.037
  2. A. A. Ahmad, A. Idris and B. H. Hameed, Desalin. Water Treat., 2013, 51(13-15), 2554-2563. https://doi.org/10.1080/19443994.2012.749019
  3. J. Yu and T. H. Kim, J. Electrochem. Sci. Technol., 2017, 8(4), 274-281. https://doi.org/10.5229/JECST.2017.8.4.274
  4. L. E. Downie, L. J. Krause, J. C. Burns, L. D. Jensen and V. L. Chevrier, J. Electrochem. Soc., 2013, 160(4), A588-A594. https://doi.org/10.1149/2.049304jes
  5. Z. Li, J. Huang, B. Y. Liaw, V. Metzler and J. Zhang, J. Power Sources, 2014, 254, 168-182. https://doi.org/10.1016/j.jpowsour.2013.12.099
  6. M. Endo, C. Kim, K. Nishimura, T. Fujino and K. Miyashita, Carbon, 2000, 38(2), 183-197. https://doi.org/10.1016/S0008-6223(99)00141-4
  7. H. D. Yoo, J. H. Ryu, S. Park, Y. Park, B. H. Ka and S. M. Oh, J. Electrochem. Sci. Technol., 2011, 2(1), 45-50. https://doi.org/10.5229/JECST.2011.2.1.045
  8. P. Kalyani, and A. Anitha, Int. J. Hydrogen Energy., 2013, 38(10), 4034-4045. https://doi.org/10.1016/j.ijhydene.2013.01.048
  9. Y. Yao and F. Wu, Nano Energy., 2015, 17, 91-103. https://doi.org/10.1016/j.nanoen.2015.08.004
  10. M. Liu, L. Kong, C. Lu, X. Li, Y. Luo and L. Kang, RSC Adv., 2012, 2(5), 1890-1896. https://doi.org/10.1039/c2ra01175a
  11. D. Kalpana, S. H. Cho, S. B. Lee, Y. S. Lee, R. Misra and N. G. Renganathan, J. Power Sources, 2009, 190(2), 587-591. https://doi.org/10.1016/j.jpowsour.2009.01.058
  12. T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G. Q. Lu, J. Power Sources, 2010, 195(3), 912-918. https://doi.org/10.1016/j.jpowsour.2009.08.048
  13. W.-J. Si, X.-Z. Wu, W. Xing, J. Zhuo and S.-P. Zhuo, J. Inorg. Mat., 2011, 26, 107-112. https://doi.org/10.3724/SP.J.1077.2010.10376
  14. E. Taer, M. Deraman, I. A. Talib, A. A. Umar, M. Oyama and R. M. Yunus, Curr. Appl. Phys., 2010, 10(4), 1071-1075. https://doi.org/10.1016/j.cap.2009.12.044
  15. C. Choi, S.-D. Seo, B.-K. Kim and D.-W. Kim, Sci. Rep., 2016, 6, 39099. https://doi.org/10.1038/srep39099
  16. R. W. Jenkins, N. E. Stageman, C. M. Fortune and C. J. Chuck, Energy Fuels, 2014, 28(2), 1166-1174. https://doi.org/10.1021/ef4022976
  17. A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-bensemra and A. Hellal, J. Hazard. Mater., 2005, 119(1-3), 189-194. https://doi.org/10.1016/j.jhazmat.2004.12.006
  18. F. Boudrahem, A. Soualah and F. Aissani-Benissad, J. Chem. Eng. Data., 2011, 56(5), 1946-1955. https://doi.org/10.1021/je1009569
  19. C. A. Toles, W. E. Marshall and M. M. Johns, Carbon, 1997, 35(9), 1407-1414. https://doi.org/10.1016/S0008-6223(97)00073-0
  20. W. M. A. W. Daud and W. S. W. Ali, Bioresour. Technol., 2004, 93(1), 63-69. https://doi.org/10.1016/j.biortech.2003.09.015
  21. Y. J. Hwang, S. K. Jeong, K. S. Nahm, J. S. Shin and M. Stephan, J. Phys. Chem. Solids., 2007, 68(2), 182-188. https://doi.org/10.1016/j.jpcs.2006.10.007
  22. T. E. Rufford, D. Hulicova-jurcakova, E. Fiset, Z. Zhu and G. Q. Lu, Electrochem. Commun., 2009, 11(5), 974-977. https://doi.org/10.1016/j.elecom.2009.02.038
  23. T. E. Rufford, D. Hulicova-jurcakova, Z. Zhu and G. Q. Lu, Electrochem. Commun., 2008, 10(10), 1594-1597. https://doi.org/10.1016/j.elecom.2008.08.022
  24. M. R. Jisha, et al, Mater. Chem. Phys., 2009, 115(1), 33-39. https://doi.org/10.1016/j.matchemphys.2008.11.010
  25. J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler and P. Pfeifer, Nanotechnology., 2012, 23, 015401. https://doi.org/10.1088/0957-4484/23/1/015401
  26. Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu and D. Zhao, J. Mater. Chem., 2012, 22(1), 93-99. https://doi.org/10.1039/C1JM12742J
  27. M. A. Lillo-Rodenas, D. Cazorla-Amoros and A. Linares-Solano, Carbon, 2003, 41(2), 267-275. https://doi.org/10.1016/S0008-6223(02)00279-8
  28. B. Campbell, R. Ionescu, Z. Favors, C. S. Ozkan and M. Ozkan, Sci. Rep., 2015, 5, 14575. https://doi.org/10.1038/srep14575
  29. A. M. Stephan, T. P. Kumar, R. Ramesh, S. Thomas, S. K. Jeong and J. S. Nahm, Mater. Sci. Eng. A., 2006, 430(1-2), 132-137. https://doi.org/10.1016/j.msea.2006.05.131
  30. S. Kim, H. V. Ly, G. Choi, J. Kim and H. C. Woo, Bioresour. Technol., 2012, 123, 445-451. https://doi.org/10.1016/j.biortech.2012.07.097
  31. S. Kim, H. V. Ly, J. Kim, E. Y. Lee and H. C. Woo, Chem. Eng. J., 2015, 263, 194-199. https://doi.org/10.1016/j.cej.2014.11.045
  32. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl., 1985, 57(4), 603-619. https://doi.org/10.1351/pac198557040603
  33. K. Tang, R. J. White, X. Mu, M. Titirici, P. A. Aken and J. Maier, ChemSusChem, 2012, 5(2), 400-403. https://doi.org/10.1002/cssc.201100609
  34. C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui and Y. Li, Nano Energy, 2015, 11, 481-489. https://doi.org/10.1016/j.nanoen.2014.11.036