DOI QR코드

DOI QR Code

Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling

  • Mendoza, Joseph Albert (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Hwang, Sungwon (Graduate School of Chemistry and Chemical Engineering, Inha University)
  • Received : 2018.05.29
  • Accepted : 2018.08.23
  • Published : 2018.11.30

Abstract

Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.

Keywords

Acknowledgement

Supported by : INHA UNIVERSITY

References

  1. J.-H. Park and C.-H. Shin, J. Ind. Eng. Chem., 21, 683 (2015). https://doi.org/10.1016/j.jiec.2014.03.037
  2. J.-H. Park, H. Noh, J. W. Park, K. H. Row, K. D. Jung and C.-H. Shin, Res. Chem. Intermed., 37, 1125 (2011). https://doi.org/10.1007/s11164-011-0377-9
  3. J. Rischard, R. Franz, C. Antinori and O. Deutschmann, AIChE J., 63, 43 (2017). https://doi.org/10.1002/aic.15368
  4. H. Lee, J. C. Jung, H. Kim, Y.-M. Chung, T. J. Kim, S. J. Lee, S.-H. Oh, Y. S. Kim and I. K. Song, Catal. Commun., 9, 1137 (2008). https://doi.org/10.1016/j.catcom.2007.10.023
  5. E. Hong, J.-H. Park and C.-H. Shin, Catal. Surv. Asia, 20, 23 (2016). https://doi.org/10.1007/s10563-015-9201-7
  6. K. Huang, L. Wang, S. Lin, Y. Xu and D. Wu, J. Taiwan Inst. Chem. Eng., 63, 61 (2016). https://doi.org/10.1016/j.jtice.2016.03.023
  7. J.-H. Park and C.-H. Shin, Appl. Catal., A, 495, 1 (2015). https://doi.org/10.1016/j.apcata.2014.10.063
  8. W. Yan, Q. Y. Kouk, J. Luo, Y. Liu and A. Borgna, Catal. Commun., 46, 208 (2014). https://doi.org/10.1016/j.catcom.2013.12.016
  9. J. H. Zhang, Z. B. Wang, H. Zhao, Y. Y. Tian, H. H. Shan and C. H. Yang, Appl. Petrochem. Res., 5, 255 (2015). https://doi.org/10.1007/s13203-015-0130-1
  10. S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016). https://doi.org/10.1007/s11814-016-0206-3
  11. T. Ren, M. K. Patel and K. Blok, Energy, 33, 817 (2008).
  12. J. S. Sterrett and H. G. McIlvried, Ind. Eng. Chem. Process Des. Dev., 13, 54 (1974). https://doi.org/10.1021/i260049a010
  13. E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs and B. F. Sels, Chem. Soc. Rev., 43, 7917 (2014). https://doi.org/10.1039/C4CS00105B
  14. W. Xingan and L. Huiqin, Ind. Eng. Chem. Res., 35, 2570 (1996). https://doi.org/10.1021/ie950347o
  15. F. J. Dumez and G. F. Froment, Ind. Eng. Chem. Process Des. Dev., 15, 291 (1976). https://doi.org/10.1021/i260058a014
  16. D. L. Trimm and D. S. Gabbay, Trans. Faraday Soc., 67, 2782 (1971). https://doi.org/10.1039/tf9716702782
  17. J.-H. Park and C.-H. Shin, Korean J. Chem. Eng., 33, 823 (2016). https://doi.org/10.1007/s11814-015-0239-z
  18. A. Heidari and S. H. Hashemabadi, J. Taiwan Inst. Chem. Eng., 45, 1389 (2014). https://doi.org/10.1016/j.jtice.2014.02.021
  19. E. J. Hukkanen, M. J. Rangitsch and P. M. Witt, Ind. Eng. Chem. Res., 52, 15437 (2013). https://doi.org/10.1021/ie4006832
  20. H. Asadi-Saghandi and J. Karimi-Sabet, Korean J. Chem. Eng., 34, 1905 (2017). https://doi.org/10.1007/s11814-017-0025-1
  21. R. I. Singh, A. Brink and M. Hupa, Appl. Therm. Eng., 52, 585 (2013). https://doi.org/10.1016/j.applthermaleng.2012.12.017
  22. L. Tian, G. Hu, W. Du and F. Qian, Can. J. Chem. Eng., 94, 2427 (2016). https://doi.org/10.1002/cjce.22627
  23. K. Huang, S. Lin, J. Wang and Z. Luo, J. Ind. Eng. Chem., 29, 172 (2015). https://doi.org/10.1016/j.jiec.2015.04.001
  24. J. T. Cornelissen, F. Taghipour, R. Escudie, N. Ellis and J. R. Grace, Chem. Eng. Sci., 62, 6334 (2007). https://doi.org/10.1016/j.ces.2007.07.014
  25. X. Liu, S. Hu, Y. Jiang and J. Li, Chem. Eng. J., 278, 492 (2015). https://doi.org/10.1016/j.cej.2014.11.093
  26. A. Bakshi, C. Altantzis, L. R. Glicksman and A. F. Ghoniem, Powder Technol., 316, 500 (2017). https://doi.org/10.1016/j.powtec.2017.01.005
  27. K. M. Wgialla, A. M. Helal and S. S. E. H. Elnashaie, Math. Comput. Model., 15, 17 (1991).
  28. Z. Zhai, X. Wang, R. Licht and A. T. Bell, J. Catal., 325, 87 (2015). https://doi.org/10.1016/j.jcat.2015.02.015
  29. R. I. Rothenberg and J. M. Smith, AIChE J., 12, 213 (1966). https://doi.org/10.1002/aic.690120204
  30. R. Serrano-Lopez, J. Fradera and S. Cuesta-Lopez, Chem. Eng. Process., 73, 87 (2013) https://doi.org/10.1016/j.cep.2013.07.008

Cited by

  1. 3-D Multi-Tubular Reactor Model Development for the Oxidative Dehydrogenation of Butene to 1,3-Butadiene vol.4, pp.3, 2018, https://doi.org/10.3390/chemengineering4030046
  2. 바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석 vol.58, pp.4, 2018, https://doi.org/10.9713/kcer.2020.58.4.642
  3. 기포유동층 고분자 중합 반응기에서의 슬러그 특성 vol.58, pp.4, 2020, https://doi.org/10.9713/kcer.2020.58.4.651
  4. A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor vol.38, pp.2, 2018, https://doi.org/10.1007/s11814-020-0701-4