DOI QR코드

DOI QR Code

Uniformity Analysis of Unmanned Aerial Application with Variable Rate Spray System

무인항공 변량방제 시스템의 살포 균일도 분석

  • Koo, Young Mo (School of Agricultural Civil and Bio-industrial Engineering, Kyungpook National University) ;
  • Bae, Yeonghwan (Industrial Machinery Engineering Dept., Sunchon National University)
  • 구영모 (경북대학교 농업토목.생물산업공학부) ;
  • 배영환 (순천대학교 산업기계공학과)
  • Received : 2018.09.17
  • Accepted : 2018.11.23
  • Published : 2018.12.31

Abstract

In this study, we evaluated the uniformity of deposition rate and particle size distributions of the variable rate application technique using the unmanned rotorcraft by measuring the spray pattern according to path location in the range of spraying flight. The coefficient of variation (CV) of the lateral coverage rate for the overlapped distribution with the spray swath of 3.6 m in both guidance and auto-pilot flight modes maintaining constant flight speed was about 30% and the CV of the coverage rate by the flight path location was extremely small. Therefore, it was assessed that the variable rate application technology compensating for the variation of ground speed was superior in terms of spray uniformity. In addition, the droplet size distributions in both volume median diameter(VMD) and number median diameter(NMD) were adequate for aerial application and uniform in terms of lateral distribution. Thereafter, we intend to contribute to a precise application on small-scaled fields using the unmanned agricultural rotorcraft by the variable rate application.

본 연구에서는 변량방제기술을 적용한 농용 회전익기를 이용하여 살포한 입자의 구간비행 상태에서의 거리별 살포 패턴을 측정함으로써 무인 항공방제의 농약 부착률과 입자경의 분포 균일도를 평가하였다. 비행을 등속으로 유지하는 안내비행과 자동비행 모드에서 유효살포폭 3.6m로 인접비행 구간과 살포폭이 일부 중첩된 피복률에 대한 가로방향 분포의 변이계수는 30% 정도를 보였고, 비행방향 진로위치에 대한 피복률의 변이계수는 10% 미만으로 매우 균등한 것으로 평가되었다. 따라서 살포작업시 기체의 지면속도(ground speed)의 변이를 보상하는 변량살포기술은 균일도 측면에서 우수한 것으로 판명되었으며, 또한 입자경의 분포에 있어서 체적중위직경(VMD)과 개체중위직경(NMD) 모두 항공방제에 적절한 크기와 균일한 분포를 보였다. 따라서 농용 회전익기를 이용하여 소필지의 항공방제작업을 무인화 하는데 있어, 변량방제장치를 적용함으로써 소규모 필지의 균일 정밀방제를 도모하고자 하였다.

Keywords

Acknowledgement

Supported by : Kyungpook National University

References

  1. Anglund EA and Ayers PD. 2003. Field evaluation of response times for a variable rate(pressure-based and injection) liquid chemical applicator. App. Eng. Agri. 19: 273-282.
  2. ASABE Standard. S382.2 FEB1988(Rev. 2013). Calibration and distribution pattern testing of agricultural aerial application equipement.
  3. Azimi AH, Carpenter TG and Reichard DL. 1985. Nozzle spray distribution for pesticide application. Tran. of ASAE. 28: 1410-1415. https://doi.org/10.13031/2013.32451
  4. Bae Y and Koo YM. 2013. Flight attitudes and spray patterns od a roll-balanced agricultural unmanned helicopter. App. Eng. Agri. 29: 675-682.
  5. Barry JW, Ekblad RB, Markin GP and Trostle GC. 1978. Methods for sampling and assessing deposits of insecticidal sprays related over forests. USDA Forest Service.
  6. Kang TG, Lee CS, Choi DK, Jun HJ, Koo YM and Kang TH. 2010. Development of aerial application system attachable to unmanned helicopter-basic spraying characteristics for application system. J. Biosys. Eng. 35: 215-223. https://doi.org/10.5307/JBE.2010.35.4.215
  7. Koo YM, Kim SH and Shin BS. 2001. Coverage distribution of blasted droplets by an orchard sprayer. J. Korean Soc. Agri. Mach. 26: 355-362.
  8. Koo YM. 2014. Development of a stabibarless agricultural unmanned helicopter for uniform spray application on the small-scaled fields. pp.200. MAFRA Report No. 11-1543-589-01a.
  9. Koo YM. 2014. Adaptability evaluation of attitude control for agricultural helicopter using a commercial controller (I)-comparison of the state variables for manual and autopilot. J. Agri. Life Sci. 48: 157-169b.
  10. Koo YM. 2016. Feasibility of variable rate application to the ground speed variation of an agricultural helicopter. J. Agri. Life Sci. 50: 191-204.
  11. Koo YM and Park HJ. 2015. Development of a variable rate spray controller for an unmanned aerial application. J. Agri. Life Sci. 49: 255-268. https://doi.org/10.14397/jals.2015.49.4.255
  12. Koo YM and Seo HK. 2015. Error analysis of variable rate application using unmanned aerial spray system. J. Agri. Life Sci. 49: 269-282.
  13. Last AJ, Parkin CS and Beresford RH. 1987. Lostcost digital image analysis for the evaluation of aerially applied pesticide deposits. Comp. Elec. Agri. 1: 349-362. https://doi.org/10.1016/0168-1699(87)90005-6
  14. Lee CK, Jung IG, Sung JH, Kim HK and Umeda M. 2005. The current status analysis of precision agriculture machinery technology research in USA and Japan. Korean J. Inter. Agri. 17: 73-81.
  15. Matthews GA. 2000. Aerial application. pp.268-303. In Book of Pesticide Application Method(3rd. ed). Blackwell Science Ltd., Malden, MA, US.
  16. Murray RI and Yule IJ. 2007. Developing variable rate application technology: economic impact for owners and topdressing operators. New Zealand J. Agri. Res. 50: 65-72. https://doi.org/10.1080/00288230709510283
  17. Thomson SJ, Smith LA and Hanks JE. 2009. Evaluation of application accuracy and performance of a hydraulically operated variable-rate aerial application system. Tran. ASABE. 52: 715-722. https://doi.org/10.13031/2013.27389
  18. Thomson SJ, Huang Y, Hanks JE, Martin DE and Smith LA. 2010. Improving flow response of a variable-rate aerial application system by interactive refinement. Comp. Elec. Agri. 73: 99-104. https://doi.org/10.1016/j.compag.2010.04.009
  19. Thomson SJ, Womac AR and Mulrooney JE. 2013. Reducing pesticide drift by considering propeller rotation effects from aerial application near buffer zones. Sust. Agri. Res. 2: 41-51.
  20. Whitney RW and Roth LO. 1985. String collectors for spray pattern analyizer. Tran. ASAE. 28: 1749-1753. https://doi.org/10.13031/2013.32512

Cited by

  1. 농업용 방제드론의 방제면적 산출 알고리즘에 관한 연구 vol.10, pp.10, 2018, https://doi.org/10.22156/cs4smb.2020.10.10.135