DOI QR코드

DOI QR Code

Typhoon Induced Changes of the Phytoplankton at Bok-gyo Bridge Area in Juam Lake

태풍에 의한 주암호복교지점의 식물플랑크톤 변화

  • Cho, Ki An (Department of Medical Management, Chodang University) ;
  • Lee, Hak Young (Department of Biological Sciences, Chonnam National University)
  • Received : 2018.12.07
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

Phytoplankton community was studied in relation to a typhoon at Bok-gyo Bridge area in Juam Lake, Korea. In August 31, 2000, a typhoon (Prapiroon) was passed by Juam Lake with great power enough to destroy summer stratification of Juam Lake. Destratification resulted in temporal mixing of the whole water column and changed the physical and chemical properties of water bodies, and caused the changes of the biological properties. The transparency decreased from 195 cm before the typhoon to 84 cm after the typhoon with the resuspension of the bottom sediment. In the vertical distribution of the phytoplankton population, the maximum population was measured at depth of 2 m before the typhoon. However, immediately after the typhoon, the population distributed evenly throughout the entire water layers. The carbon biomass of the phytoplankton was also highest at the depth of 2 m before the typhoon, but immediately after the typhoon, it was uniformly distributed throughout the whole water layers. The vertical profiles of the concentrations of chlorophyll a, however, did not show a significant difference before and after the typhoon. The typhoon induced destratification and restratification altered the taxa of the phytoplankton. The major dominant phytoplankton taxa before the typhoon was diatoms including Aulacoseira granulata, but the green algae overwhelmed the diatoms in cell number and biomass after the typhoon. The chlorophycean dominance was replaced by cyanophycean dominance with the heavy rain and descent of water temperture at the end of September.

주암호의 복교지점에서 2000년의 여름성층은 태풍 Prapiroon에 의해 파괴되었다. 성층의 파괴는 수체의 물리, 화학적 성질을 바꾸고 생물상의 변화를 유발시켰다. 투명도는 태풍 전에는 195 cm였는데 태풍 후 84 cm로 줄었는데, 이는 강한 바람에 의한 수체의 수직혼합으로 저층의 퇴적물이 부유되면서 투명도를 감소시킨 때문으로 추측된다. 식물플랑크톤 개체수의 수직분포에서는 태풍 전에는 수심 2 m에서 최대의 개체수가 조사되었었지만 태풍 직후에는 특정 수심의 peak가 없이 전 수층에 고른 분포를 하다가 재성층이 이루어진 후 다시 표수층>수온약층>심수층의 분포를 보여주었고 최고의 개체수는 수심 1 m에서 관찰되었다. 식물플랑크톤의 탄소생물량도 수심 2 m 부근에서 가장 많다가 태풍 직후에는 전 수층에 고루 분포하였고, 재성층 후 다시 표층에 가장 높은 생물량을 보여주었다. 클로로필 a의 농도는 태풍 전후에 큰 차이가 없는 것으로 나타났다. 태풍에 의한 성층과 재성층은 식물플랑크톤의 분류군 조성도 변경시켰는데, 태풍 전의 주요 우점 식물플랑크톤은 Aulacoseira granulata를 비롯한 규조류였으나 태풍이 지나간 후 녹조류가 세포수와 생물량에서 규조류를 압도하였고, 이후 강우와 수온의 하강으로 성층이 교란되면서 Microcystis aeruginosa에 의한 남조류의 절대 우점으로 천이 되었다.

Keywords

References

  1. APHA, AWWA, AEF. 1992. Standard methods for the examination of water and wastewater. 18th ed. APHA. Washington.
  2. Dantas, W., A.N. Moura, M.C. Bittencourt-Oliveira, J.D.T. Arruda- Neto and A.D.C. Cavalcanti. 2011. Temporal variation of the phytoplankton community at short sampling intervals in the Mundau reservoir, Northeastern Brazil. Acta Botanica Brasilica 22: 970-982.
  3. Goldman, C.R. and A.J. Horne. 2008. Limnology. 2nd Ed. Mc-Graw-Hill.
  4. Graham, L.E., J.M. Graham, L.W. Wilcox and M.E. Cook. 2016. Algae. 3rd Ed. LJLM Press.
  5. Hawkins, P.R. and D.J. Griffiths. 1993. Artificial destratification of a small tropical reservoir: effects upon the phytoplankton. Hydrobiologia 254: 169-181. https://doi.org/10.1007/BF00014111
  6. Heo, W.-M. and B. Kim. 2004. The effect of artificial destratification on phytoplankton in a reservoir. Hydrobiologia 524: 229-239. https://doi.org/10.1023/B:HYDR.0000036142.74589.a4
  7. Johnson, T.C. and E.A. Laws. 2018. Impacts of Hurricanes on Wetland Phytoplankton Communities in the Gulf of Mexico. Research & Reviews: Journal of Ecology and Environmental Sciences 6: 37-42.
  8. Kalff, K. 2002. Limnology. Prentice Hall. New Jersey. 592pp.
  9. Kristensen, P., M. Sondergaard and E. Jeppesen. 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101-109.
  10. Lagmay, J., C.G. Hansel, P. Escudero, N. Autor, D. Dagot, R.V. Estoista, L. Lopez, D. Mero and S. Nacua. 2006. Hydrobiological assessment of Lake Lanao: subsequent to its unusual greening in 2006. Mindanao Journal 29: 85-100.
  11. Lampert, W. and U. Sommer. 2007. Limnoecology. Oxford University Press.
  12. Lewis, W.M. Jr. 1973. The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnology and Oceanography 18(2): 200-217. https://doi.org/10.4319/lo.1973.18.2.0200
  13. Lewis, W.M. Jr. 1987. Tropical Limnology. Annual Review of Ecology and Systematics 18: 159-184. https://doi.org/10.1146/annurev.es.18.110187.001111
  14. Livingstone, D.A. 2003. Global climate change strikes a tropical lake. Science 301: 468-469. https://doi.org/10.1126/science.1088633
  15. Locascio, J.V. and D.A. Mann DA. 2005. Effects of Hurricane Charley on fish chorusing. Biology Letters 1: 362-365. https://doi.org/10.1098/rsbl.2005.0309
  16. Metillo, E.B. and C.O. Garcia-Hansel. 2016. A Review on the Ecology and Biodiversity of Lake Lanao (Mindanao Is., The Philippines). IAMURE International Journal of Ecology and Conservation 18: 17-66.
  17. Montagnes, D.J.S., J.A. Berges, P.J. Harrison and F.J.R. Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography 39: 1044-1060. https://doi.org/10.4319/lo.1994.39.5.1044
  18. Reynolds, C.S. 1989. Physical determinants of seasonal change in the species composition of phytoplankton. In Sommer, U. (ed.) Succession in plankton communities, pp. 9-56. Springer, Berlin.
  19. Reynolds, C.S., S.W. Wiseman and M.J.O. Clarke. 1984. Growth and loss rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic biomass. Journal of Applied Ecology 21: 11-39. https://doi.org/10.2307/2403035
  20. Secor, D.H., F. Zhang, M.H.P. O'Brien and M. Li. 2018. Ocean destratification and fish evacuation caused by a Mid-Atlantic tropical storm. ICES Journal of Marine Science, fsx 241: 1-12.
  21. Sheela, A.M., J. Letha and S. Joseph. 2011. Environmental status of a tropical lake system. Environmental Monitoring and Assessment 180: 427-449. https://doi.org/10.1007/s10661-010-1797-5
  22. Sournia, A. 1978. Phytoplankton Manual. UNESCO. pp. 337.
  23. Steinberg, C. 1983. Effects of artificial destratification on the phytoplankton populations in a small lake. Journal of Plankton Research 5: 855-864. https://doi.org/10.1093/plankt/5.6.855
  24. Takahashi, M. and T. Hori. 1984. Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Marine Biology 79: 177-186. https://doi.org/10.1007/BF00951826
  25. Tavera, R. and V. Martinez-Almeida. 2005. Atelomixis as a possible driving force in the phytoplankton composition of Zirahue'n, a warm-monomictic tropical lake. Hydrobiologia 533: 199-208. https://doi.org/10.1007/s10750-004-2418-5
  26. Wetzel, R.G. 1999. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, San Diego.
  27. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses. Springer. New York. pp. 429.