DOI QR코드

DOI QR Code

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film

Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법

  • Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Young-Rae (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 박태완 (한국세라믹기술원전자융합소재본부) ;
  • 정현성 (한국세라믹기술원전자융합소재본부) ;
  • 조영래 (부산대학교재료공학부) ;
  • 이정우 (부산대학교재료공학부) ;
  • 박운익 (한국세라믹기술원전자융합소재본부)
  • Received : 2018.10.22
  • Accepted : 2018.11.09
  • Published : 2018.12.05

Abstract

Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Keywords

Acknowledgement

Supported by : 한국세라믹기술원, 한국연구재단, (재)하이브리드 인터페이스기반 미래소재연구단

References

  1. A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, J. Power Sources 174, 1177 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.180
  2. M. Park, Y.-J. Jung, J. Kim, H. I. Lee, and J. Cho, Nano Lett. 13, 4833 (2013). https://doi.org/10.1021/nl402566s
  3. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, Nano Lett. 12, 1946 (2012). https://doi.org/10.1021/nl2044327
  4. C. Liu, F. Li, L-P. Ma, and H.-M. Cheng, Adv. Mater. 22, E28 (2010). https://doi.org/10.1002/adma.200903328
  5. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nature Mater. 14, 271 (2015). https://doi.org/10.1038/nmat4170
  6. T. Park, K. Kim, and O. Song, Korean J. Met. Mater. 55, 440 (2017). https://doi.org/10.3365/KJMM.2017.55.6.440
  7. M. Penza, C. Martucci, and G. Cassano, Sens. Actuators B 50, 52 (1998). https://doi.org/10.1016/S0925-4005(98)00156-7
  8. J. C. Kim, H. K. Jun, J.-S. Huh, and D. D. Lee, Sens. Actuators B 45, 271 (1997). https://doi.org/10.1016/S0925-4005(97)00325-0
  9. X. Chen and H. J. Schluesener, Toxicol. Lett. 176, 1 (2008). https://doi.org/10.1016/j.toxlet.2007.10.004
  10. S. Meesuk, J.-P. Cao, K. Sato, Y. Ogawa, and T. Takarada, Energy Fuels, 25, 4113 (2011). https://doi.org/10.1021/ef200867q
  11. Y.-G. Guo, J.-S. Hu, and L-J. Wan, Adv. Mater. 20, 2878 (2008). https://doi.org/10.1002/adma.200800627
  12. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. phys. Chem. Lett. 1, 2193 (2010). https://doi.org/10.1021/jz1005384
  13. M.-K. Min, J. Cho, K. Cho, and H. Kim, Electrochim. Acta 45, 4211 (2000). https://doi.org/10.1016/S0013-4686(00)00553-3
  14. M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, Science 324, 71 (2014).
  15. C. M. Pedrero, H. Silva, D. A. P. Tanaka, S. Liguori, A. Iulianelli, A. Basile, and A. Mendes, Appl. Catal. B: Environ. 174, 67 (2015).
  16. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, and V. R. Stamenkovic, Science 343, 1339 (2014). https://doi.org/10.1126/science.1249061
  17. S. Yi, B. Yang, and Z.-S. Zhang, Met. Mater. Int. 23, 603 (2017). https://doi.org/10.1007/s12540-017-6392-7