DOI QR코드

DOI QR Code

A Study on Seismic Liquefaction Risk Map of Electric Power Utility Tunnel in South-East Korea

국내 동남권 지역의 전력구 지반에 대한 지진시 액상화 위험도 작성 연구

  • Choi, Jae-soon (Department of Civil & Architectural Engineering, Seokyeong University) ;
  • Park, Inn-Joon (Department of Infra System, Hanseo University) ;
  • Hwang, Kyengmin (Korea Electric Power Corporation Research Institute) ;
  • Jang, Jungbum (Korea Electric Power Corporation Research Institute)
  • Received : 2018.07.25
  • Accepted : 2018.09.12
  • Published : 2018.10.01

Abstract

Following the 2016 Gyeongju earthquake, the Pohang Earthquake occurred in 2017, and the south-east region in Korea is under the threat of an earthquake. Especially, in the Pohang Earthquake, the liquefaction phenomenon occurred in the sedimentation area of the coast, and preparation of countermeasures is very important. The soil liquefaction can affect the underground facilities directly as well as various structures on the ground. Therefore, it is necessary to identify the liquefaction risk of facilities and the structures against the possible earthquakes and to prepare countermeasures to minimize them. In this study, we investigated the seismic liquefaction risk about the electric power utility tunnels in the southeast area where the earthquake occurred in Korea recently. In the analysis of seismic liquefaction risk, the earthquake with return period 1000 years and liquefaction potential index are used. The liquefaction risk analysis was conducted in two stages. In the first stage, the liquefaction risk was analyzed by calculating the liquefaction potential index using the ground survey data of the location of electric power utility tunnels in the southeast region. At that time, the seismic amplification in soil layer was considered by soil amplification factor according to the soil classification. In the second stage, the liquefaction risk analysis based on the site response analyses inputted 3 earthquake records were performed for the locations determined to be dangerous from the first step analysis, and the final liquefaction potential index was recalculated. In the analysis, the site investigation data were used from the National Geotechnical Information DB Center. Finally, it can be found that the proposed two stage assessments for liquefaction risk that the macro assessment of liquefaction risk for the underground facilities including the electric power utility tunnel in Korea is carried out at the first stage, and the second risk assessment is performed again with site response analysis for the dangerous regions of the first stage assessment is reasonable and effective.

2016년 경주지진에 이어 2017년에도 포항지진이 발생하여 우리나라 동남권 지역이 지진의 위협을 받고 있는 실정이다. 특히, 포항지진에서는 연안의 퇴적지반에서 액상화 현상이 발생하여 이에 대한 대책 마련이 크게 중요시되고 있다. 지반 액상화는 지표면 위의 구조물뿐만 아니라 지중의 시설에 대해 직접적인 영향을 줄 수 있기 때문에 발생 가능한 지진에 대한 시설물의 액상화 위험도를 파악하여 이에 대한 대책을 마련할 필요가 있다. 이 연구에서는 최근 국내에서 지진이 발생한 동남권 지역의 전력구를 대상으로 지진 시 액상화 위험도를 평가하였다. 이때, 발생 가능한 지진은 재현주기 1,000년으로 고려하였으며 지진 시 액상화 위험도는 액상화 발생가능성 지수를 통해 검토하였다. 액상화 위험도 분석은 2단계로 진행되었으며 1단계에서는 동남권 전력공동구 설치위치의 지반조사자료를 토대로 액상화 발생 가능성 지수를 산정하여 액상화 위험도를 분석하였다. 이때, 지반 내 증폭현상은 지반종별 지반증폭계수를 통해 고려되었다. 2단계 위험도 분석은 1단계 분석에서 액상화 발생 가능성이 매우 높게 판정된 전력구 주변의 시추공 정보를 바탕으로 지진응답해석을 수행하고 이를 토대로 액상화 발생 가능성 지수를 재산정하여 지진 시 액상화 위험도를 재분석하였다. 이때, 이용된 지반조사자료는 국토지반정보 통합DB센터의 자료이며 지진응답해석에서는 3가지의 실지진 가속도 시간이력곡선을 이용하였다. 연구결과, 국내 지중 시설물에 대한 액상화 위험도 평가를 1단계 광역기반의 액상화 위험도 평가를 수행하고 2단계 평가에서는 1단계 평가에서 위험한 곳으로 평가된 지역에 대해서 지진응답해석을 동반한 위험도 평가를 재수행하는 것이 매우 합리적이고 유효적절한 것으로 나타났다.

Keywords

References

  1. Baek, W. H., Choi, J. S. and Ahn, J. K. (2018), Liquefaction hazard map in Pohang based on earthquake scenarios, Journal of Earthquake Engineering Society in Korea, Vol. 22, No. 3, pp. 219-224 (In Korean). https://doi.org/10.5000/EESK.2018.22.3.219
  2. Beetham, R. D., Begg, J. G., Barker, P., Levick, S. and Beetham, J. (2011), Assessment of liquefaction and related ground failure hazards in Palmerston North, Consultancy Report, GNS Science, Wellington, New Zealand, pp. 8-25.
  3. Ernst, W. G., Tsujimori, T., Zhang, R. and Liou, J. G. (2007), Permo-triassic collision subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin, Annual Review of Earth and Planetary Science, Vol. 35, No. 1, pp. 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
  4. European Committee for Standardization (1998), Eurocode8, Report, European Committee for Standardization, Brussels, Belgium, pp. 33-35.
  5. Idriss, I. M. and Sun, J. I. (1997), User's Manual for SHAKE91, Center for Geotechnical Modeling Department of Civil & Environment Engineering University of California, Davis, C.A., pp. 1-11.
  6. Iwasaki, T., Tatsuoka, K., Tokida, F. and Yasuda, S. (1978), A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, C.A., Vol. 2, pp. 885- 896.
  7. Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S. and Sato, H. (1982), Microzonation for soil liquefaction potential using simplified methods, Proceedings of 3rd International Conference on Microzonation, Seattle, pp. 1319-1330.
  8. Jin, Y. J., Park, K, J. and Song, B. W. (2014), The study for ground liquefaction hazard mapping with simple estimating method, J. of Korean Society Hazard Mitigation, Vol. 14, No. 5, pp. 199-204 (In Korean). https://doi.org/10.9798/KOSHAM.2014.14.5.199
  9. Korean Electric Power Cooperation (2003), Seismic Design Guideline for Electric Power Facilities (In Korean).
  10. Ku, T. J. (2010), Development of mapping of liquefaction hazard considering various ground condition in Korea, Master's thesis, Seokyeong University, pp. 38-48 (In Korean).
  11. Kwak, C. W. (2001), A study on the liqefaction hazard micro- zonation at reclaimed ports and harbors in Koera, Master's thesis, Yonsei University, pp. 20-81 (In Korean).
  12. Kwak, M. C., Ku, T. J. and Choi, J. S. (2015), Development of mapping method for liquefaction hazard in moderate seismic region considering the uncertninty of big site investigation data, J. of the Korean Geo-Environmental Society, Vol. 16, No. 1, pp. 17-28 (In Korean).
  13. Leung, E. H. Y. and Pappin, J. W. (2017), Liquefaction hazard of reclaimed land in low to moderate seismicity region, 3rd International Conference of Performance Based Design in Earthquake Geotechnical Engieernig, Vancouver, Canada, Paper-No. 214.
  14. Linda, A. A. and Abrahamson, Norman. (2010), "An improved method for nonstationary spectral matching", Earthquake Spectra 26(3), pp. 601-617. https://doi.org/10.1193/1.3459159
  15. National Groundwater Information Center (2017), Groundwater Statistic Usage of Nationwide.
  16. Park, D. H., Kwak, D. Y., Jeong, C. G. and Park, T. H. (2012), Development of probabilistic seismic site coefficients of Korea, Soil Dynamics and Earthquake Engineering, Vol. 43, pp. 247-260 (In Korean). https://doi.org/10.1016/j.soildyn.2012.07.018
  17. Sun, C. K. (2010), Suggestion of additional criteria for site cate- gorization in Korea by quantifying regional specific characteristics on seismic response, Journal of Korean Society of Earth and Exploration Geophysicists, KSEG, Vol. 13, No. 3, pp. 203-218 (In Korean).
  18. Sun, C. K., Jeong, C. K. and Kim, D. S. (2005), A proposition of site coefficients and site classification system for design ground motions at inland of the Korean peninsula, Journal of Korean Geotechnical Society, KGS, Vol. 21, No. 6, pp. 101-115 (In Korean).

Cited by

  1. 개정된 지반증폭계수의 Macro적 액상화 평가에 미치는 영향 분석 vol.36, pp.2, 2020, https://doi.org/10.7843/kgs.2020.36.2.5
  2. 포항지진 액상화 현상 분석을 통한 국내 액상화 평가 기준의 개정 타당성 검토 vol.36, pp.4, 2020, https://doi.org/10.7843/kgs.2020.36.4.17