DOI QR코드

DOI QR Code

Comparison of Domestic and Overseas Allowable Standards Related to Emissions from Wood Pellet Combustion

목재펠릿 연소 배출물질과 관련한 국내외 허용기준 비교

  • Yang, In (SCION. Te Papa Tipu Innovation Park) ;
  • Han, Gyu-Seong (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University)
  • Received : 2018.08.10
  • Accepted : 2018.09.08
  • Published : 2018.09.25

Abstract

This article explains the types of emissions from wood combustion, how they are generated and the degree of harmful influence on the human body, and a comparison between domestic and overseas allowable standards regarding the safety of wood pellets, the allowable amount of emissions caused by combustion and so on was conducted.

본 총설에서는 목재연소에 따른 배출물의 종류, 발생 체제 및 인체 유해성 정도를 설명하고, 목재펠릿과 관련된 안전성, 연소에 의한 배출물의 허용량 등에 대한 국내외 기준을 비교하여 보고한다.

Keywords

References

  1. Bafver, L.S., Leckner, B., Tullin, C., Berntsen, M. 2011. Particle emissions from pellets stoves and modern and old-type wood stoves, Biomass & Bioenergy 35: 3648-3655. https://doi.org/10.1016/j.biombioe.2011.05.027
  2. Boman, C., Nordin, A., Ohman, M., Bostrom, D. 2005. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization, Stockholm University, Stockholm, Sweden.
  3. British Columbia, Ministry of Environment. 2011. Wood pellet manufacturing facilities, BC-ME, Vancouver, Canada.
  4. British Standard Institute. 2007. Pellet burners for small heating boilers-definitions, requirements, testing, marking, BS EN-15270, London, England.
  5. Burkhard, E., Russell, N. 2009. European wood-heating technology survey: An overview of combustion principles and the energy and emissions performance characteristics of commercially available systems in Austria, Germany, Denmark, Norway, and Sweden, NYSERDA Report 10-01, Albany, NY, USA.
  6. Choi, D.J., Park, I.S., Lee, S.H., Chang, S.H., Chang, H.I. 2006. Analysis and evaluation of regulatory condition for the emission of domestic and foreign environmental pollution, Korea Research Institute for Environment and Development, Seoul, Korea.
  7. European Committee for Standardization. 2012. Heating boilers - Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 KW - terminology, requirement, testing and marking, EN 303-5, Brussels, Belgium.
  8. Hong, J.H., Lee, S.B., Kang, G.H., Chang, K.W., Kim, J.H. 2011. Fine particles in the flue gas of chimney, National Institute of Environmental Research, Incheon, Korea.
  9. Kim, K.H., 2017. Wood Pellet - Renewable energy? Ultra fine dust 20 times, http://news.kbs.co.kr/news/ view.do?ncd=3559653, Seoul, Korea.
  10. Kim, S.G., Jo, M.R., Han, J.S., Lee, S.B., Heo, S.H, Kim, J.H., Kim, H.C., Lee, M.H., Hong, J.H. 2011. A study for arrangement of Korea air pollutants standard method in stack fine particles, National Institute of Environmental Research, Incheon, Korea.
  11. Kim, S. H., Yang, I., Han, G.-S. 2015. Effect of sawdust moisture content and particle size on the fuel characteristics of wood pellet fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi Sawdust. Journal of the Korean Wood Science and Technology 43(6): 757-767. https://doi.org/10.5658/WOOD.2015.43.6.757
  12. Korea Forest Service. 2018. Standard for the support of residential wood pellet boiler, KFS, Daejeon, Korea.
  13. Korea Standard. 2017. Wood pellet boilers, KSB 8901, Seoul, Korea
  14. McDonald, R. 2009. Evaluation of gas, oil and wood pellet fueled residential heating system emissions characteristics, Brookhaven National Laboratory, Upton, NY, USA.
  15. Ministry of Environment. 2017a. Clean Air Conservation Act, ME, Sejong, Korea.
  16. Ministry of Environment. 2017b. Standard methods for the measurements of air pollution, National Institute of Environmental Research, Incheon, Korea.
  17. Ministry of Environment. 2018. Persistent Organic Pollutants Control Act, ME, Sejong, Korea.
  18. Obernberger I., Brunner, T., Barnthaler, G. 2006. Chemical properties of solid biofuels-significance and impact, Biomass & Bioenergy 30(11): 973-982. https://doi.org/10.1016/j.biombioe.2006.06.011
  19. Olsson, M., Kjallstrand, J., Petersson, G. 2003. Specification chimney emissions and biofuel characteristics of softwood pellets for residential heating in Sweden, Biomass & Bioenergy 24(1): 51-57. https://doi.org/10.1016/S0961-9534(02)00083-1
  20. Pa, A., Bi, X.T., Sokhansanj, S. 2011. A life cycle evaluation of wood pellet gasification for district heating in british columbia, Bioresource Technology 102(10): 6167-6177. https://doi.org/10.1016/j.biortech.2011.02.009
  21. Pa, A., Bi, X..T., Sokhansanj, S. 2013. Evaluation of wood pellet application for residential heating in british columbia based on a streamlined life cycle analysis, Biomass & Bioenergy 49: 109-122. https://doi.org/10.1016/j.biombioe.2012.11.009
  22. Perzon, M. 2010. Emissions of organic compounds from the combustion of oats - a comparison with softwood pellets, Biomass & Bioenergy 34: 828-837. https://doi.org/10.1016/j.biombioe.2010.01.027
  23. Qiu, G. 2013. Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions, Renewable Energy 50: 94-102. https://doi.org/10.1016/j.renene.2012.06.045
  24. Renewable Energy Policy Network for the 21st Century. 2016. Renewables 2015 - Global Status Report 2015, REN 21, Paris, France.
  25. Riva G., Pedretti, E.F., Toscano, G., Duca, D. Pizzi, A. 2011. Determination of polycyclic aromatic hydrocarbons in domestic pellet stove emissions, Biomass & Bioenergy 35(1): 4261-4267.
  26. Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Cruz, C., Handler, M., Bauer, G., Puxbaum, H. 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems, Atmospheric Environment 45: 7443-7454. https://doi.org/10.1016/j.atmosenv.2011.05.006
  27. Sjoding, D., E. Kanoa, P. Jensen. 2013. Developing a wood pellet/densified biomass industry in washington state: opportunities and challenges, Washington State University, Pullman, WA, USA.
  28. Subgroup on Small Combustion Installations. 2010. Options for limit values for emissions of dust from small combustion installations < 50 MWth, UNECE Convention on Long-range Transboundary Air Pollution, http://www.unece.org/fileadmin/DAM/ env/documents/2010/eb/wg5/wg47/Informal%20d ocuments/Info.%20doc%209_Options%20for%20 PM%20ELVs%20for%20SCI%20%20final.pdf [accessed 28.11.13].
  29. Tillman, D.A., Rossi, A.J. and Kitto, W.D. 1981. Wood Combustion: Principle, processes, and economics, Academic Press, Cambridge, USA.
  30. United States - Environmental Protection Agency. 2017. Determination of PM10 and PM2.5 emissions from stationary sources (Constant sampling rate procedure), US-EPA Method 201A, Washington D.C., USA.
  31. United States - Environmental Protection Agency. 2012. Residential wood heaters, new source performance standards, Washington D.C., USA.
  32. United States Environmental Protection Agency. 2017. Volatile Organic Compounds' Impact on Indoor Air Quality, https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality, Washington D.C., USA.
  33. Villeneuve, J., Joahnn, H.P., Palacios, Savoie, P., Godbout, S. 2012. A critical review of emission standards and regulations regarding biomass combustion in small scale units(<3MW), Bioresource Technology 111: 1-11. https://doi.org/10.1016/j.biortech.2012.02.061