DOI QR코드

DOI QR Code

Enhancement of Oil Delivery by A Mixture of Coacervate Systems

복합 코아세르베이트의 오일 전달 효율 증대

  • Received : 2018.06.26
  • Accepted : 2018.09.04
  • Published : 2018.09.30

Abstract

A structure of coacervate affects the adsorption of oil and polymer as a conditioning ingredient. This study aims to elucidate a structural characterization of the coacervate of which is a mixture of alkyl cellulose and guar gum. It is well known that the guar gum supports stiffness to the hair when it is adsorbed on the hair. However, addition of guar gum in the formulation composed of alkyl cellulose tremendously increased flexibility in hair. The stable complex system is induced by an electrostatic force between a head group of anionic surfactant and an quarternary ammonium at the alkyl cellulose, and the affinity of alkyl chain to the oil inside the micelle of surfactant by hydrophobic interactions. Taken together, amount of the coacervate increased oil-delivery upon hair in shampooing and these caused a low bending rigidity and calming on the hair swatch.

코아세르베이트의 구조는 모발의 오일 및 폴리머 같은 기능성 성분 흡착에 매우 큰 영향을 준다. 본 연구의 목적은 알킬 셀룰로오스와 구아검 간 복합 코아세르베이트의 혼합물에서 그 구조적인 결합의 특성을 밝히는데 있다. 모발에 흡착되면 모발에 뻣뻣함을 부여하는 구아검 컨디셔닝 폴리머가 오일과 함께 알킬 셀룰로오스와 혼합될 경우 동일 함량 및 알킬 셀룰로오스와의 비가 3 : 1일 경우에 모발을 매우 부드럽게 함을 발견하였다. 이는 글루코스링을 백본으로 하는 양이온 알킬기 셀룰로오스 폴리머와 구아검 폴리머를 혼합하여 오일을 결합시키면, 알킬 셀룰로오스의 친수성 부위와 음이온 계면활성제가 정전기적으로 결합하고, 알킬 셀룰로오스의 4급 알킬 암모늄기에 포함되는 알킬기가 계면활성제의 소수성 부위와 함께 결합함과 동시에, 구아검 코아세르베이트가 전체적으로 안정적인 구조를 이루게 하여 많은 양의 코아세르베이트를 생성하게 하는 것을 코아세르베이트 생성양 측정 및 모발 유연성 증대를 통해 확인하였다.

Keywords

References

  1. P. Hallegot, G. Hussler, V. Jeanne-Rose, F. Leroy, and P. Pineau, Discovery of a sol-gel reinforcing the strength of hair structure: mechanisms of action and macroscopic effects on the hair samain. J. Sol-Gel Sci. Technol., 79(2), 359 (2016). https://doi.org/10.1007/s10971-016-3961-z
  2. H. G. Bungenberg de Jong, Colloid Science, ed. H. R. Kruyt, Elsevier Publishing Co. Inc., Amsterdam, 335 (1949).
  3. C. Lepilleur, J. Mullay, C. Kyer, P. McCalister, and T. Clifford, Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers. J. Cosmet. Sci., 62, 161 (2011).
  4. E. D. Goddard, T. S. Phillips, and R. B. Hannan, Water soluble polymer-surfactant interaction part I, J. Soc. Cosmet. Chem., 26(9), 461 (1975).
  5. J. A. Faucher, E. D. Goddard, and R. B. Hannan, Sorption and desorption of a cationic polymer by human hair: effect of salt solutions, Textile Res. J., 47(9), 616 (1977). https://doi.org/10.1177/004051757704700906
  6. Y. K. Kamath, C. J. Dansizer, and H. D. Weigmann, Surface wettability of human hair. III. role of surfactants in the surface deposition of cationic polymers, J. Appl. Polymer Sci., 30(3), 1 (1985). https://doi.org/10.1002/app.1985.070300101
  7. S. Chiron, Performance and Sensorial Benefits of Cationic Guar in Hair Care Applications, Cosmet. & Toil., 119, February (2004).
  8. Y. Hiwatari, K. Yoshida, T. Akutsu, M. Yabu, and S. I. Polyelectrolyte, Micelle coacervation-effect of coacervate on the properties of shampoo, J. Soc. Cosmet. Chem. Japan., 26(6), 316 (2004).
  9. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. I. silica surfaces, Langmuir, 20(5), 1753 (2004). https://doi.org/10.1021/la035626s
  10. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. II. hydrophobized silica surfaces, Langmuir, 20(16), 6692 (2004). https://doi.org/10.1021/la049922w
  11. F. E. Antunes, E. F. Marques, R. Gomes, K. Thuresson, B. Lindman, and M. G. Miguel, Network formation of cationic vesicles and oppositely charged polyelectrolytes. effect of polymer charge density and hydrophobic modification, Langmuir, 20(11), 4647 (2004). https://doi.org/10.1021/la049783i
  12. S. Zhou, C. Xu, J. Wang, P. Golas, and J. Batteas, Phase behavior of cationic hydroxyethyl cellulose-sodium dodecyl sulfate mixtures: effect of molecular weight and ethylene oxide side chain length of polymers, Langmuir, 20(20), 8482 (2004). https://doi.org/10.1021/la049142n
  13. C. Goh, New cationic conditioning polymers for hair care, Asia Pac. Personal Care, September (2005).
  14. S. A. H. Khalil, J. r. Nixon, and J. E. Carless, Role of pH in the coacervation of the systems: gelatin-water-ethanol and gelatin-water-sodium sulphate, J. Pharm. Pharmacol., 20, 215 (1968). https://doi.org/10.1111/j.2042-7158.1968.tb09724.x
  15. F. Weinbreck and R. H. W. Wientjes, Rheological properties of whey protein/gum arabic coacervates, J. Rheol., 48, 1215 (2004). https://doi.org/10.1122/1.1795191
  16. C. Thomassin, H. P. Merkle, and B. A. Gander, Physico-chemical parameters governing protein microencapsulation into biodegradable polyesters by coacervation, Int. J. Pharm., 147, 173 (1997). https://doi.org/10.1016/S0378-5173(96)04810-7
  17. S. B. Ruetsch, Y. K. Kamath, A. S. Rele, and R. B. Mohile, Secondary ion mass spectrometric in vestigation of penetration of coconuta nd mineral oils into human hair fibers: relevance to hair damage, J. Cosmet. Sci., 52(3), 169 (2001).
  18. A. Rele and R. B. Mohile, Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage, J. Cosmet. Sci., 54, 175 (2003).
  19. S. H. Song, B. Park, S. K. Son, and S. Choi, Quantitative analysis for amount of coacervate in shampoo, J. Soc. Cosmet. Sci. Korea, 44, 251 (2018).
  20. C. Lepilleur, J. Mullay, C. Kyer, P. McCalister, and T. Clifford, Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers, J. Cosmet. Sci., 62, 161 (2011).
  21. F. Weinbreck and R. H. W. Wientjes, Rheological properties of whey protein / gum arabic coacervates, J. Rheol., 48, 1215 (2004). https://doi.org/10.1122/1.1795191
  22. A. V. Svensson, L. Huang, E. S. Johnson, T. Nylander, and L. Piculell, Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants, Appl. Mater. Interf., 11, 2431, (2009).