DOI QR코드

DOI QR Code

Characteristics of Ultrafine Particles in Urban Areas Observed Worldwide and in Korea: Sources and Emissions, Spatial and Temporal Distributions, and Health Effects

한국을 포함한 세계 도심지역에서 관측된 나노미세먼지(UFP)의 특성: 발생원, 시·공간적 분포, 건강에 미치는 영향을 중심으로

  • Choi, Wonsik (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 최원식 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2018.05.15
  • Accepted : 2018.07.03
  • Published : 2018.09.30

Abstract

Ultrafine particles (< 100 nm in diameter, UFP) are known to be more toxic per unit mass than larger particles and contribute to more than 90% in particle number concentrations in urbanized cities but much less in mass. The major sources of UFP are vehicle emissions in urban areas. Due to their tiny size (the sizes of UFP from vehicle emissions range from 10 to 60 nm depending on engine and fuel types), inhaled UFP can reach the deepest area of respiratory track (e.g., pulmonary alveoli) as well as all of the body via lymph and blood circulation causing various adverse health effects. This article reviews the sources and emission factors of UFP, temporal and spatial distributions in urban areas and their health effects reported by toxicological and epidemiological studies. We also compared the levels of UFP concentrations measured in other countries with those in Korean cities to evaluate the public exposure to UFP in Korea. Ultimately, we expect this study can contribute to developing the risk assessment techniques for public exposure to UFP in the urbanized cities in Korea.

Keywords

References

  1. Bae, G.-N., S.-B. Lee, and S.-M. Park, 2007: Vehiclerelated fine particulate air pollution in Seoul, Korea. Asian J. Atmos. Environ., 1, 1-8. https://doi.org/10.5572/ajae.2007.1.1.001
  2. Bae, G.-N., M. C. Kim, D.-Y. Lim, K.-C. Moon, and N. J. Baik, 2003: Characteristics of urban aerosol number size distribution in Seoul during the winter season of 2001. J. Korean Soc. Atmos. Environ., 19, 167-177 (in Korean).
  3. Bianchi, F., and Coauthors, 2016: New particle formation in the free troposphere: a question of chemistry and timing. Science, 352, 1109-1112, doi:10.1126/science.aad5456.
  4. Birmili, W., and A. Wiedensohler, 2000: Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and $H_SO_4$ measurements. Geophys. Res. Lett., 27, 2205-2208. https://doi.org/10.1029/1999GL011334
  5. Birmili, W., J. Rehn, A. Vogel, C. Boehlke, K. Weber, and F. Rasch, 2013: Micro-scale variability of urban particle number and mass concentrations in Leipzig, Germany. Meteorol. Z., 22, 155-165, doi:10.1127/0941-2948/2013/0394.
  6. Birmili, W., H. Berresheim, C. Plass-Dulmer, T. Elste, S. Gilge, A. Wiedensohler, and U. Uhrner, 2003: The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, $H_SO_4$, OH, and monoterpenes measurements. Atmos. Chem. Phys., 3, 361-376. https://doi.org/10.5194/acp-3-361-2003
  7. Birmili, W., K. Heinke, M. Pitz, J. Matschullat, A. Wiedensohler, J. Cyrys, H.-E. Wichmann, and A. Peters, 2010: Particle number size distributions in urban air before and after volatilisation. Atmos. Chem. Phys., 10, 4643-4660, doi:10.5194/acp-10-4643-2010.
  8. Biswas, S., V. Verma, J. J. Schauer, and C. Sioutas, 2009:Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits. Atmos. Environ., 43, 1917-1925. https://doi.org/10.1016/j.atmosenv.2008.12.040
  9. Brown, S. G., T. Lee, G. A. Norris, P. T. Roberts, J. L. Collett, P. Paatero, and D. R. Worsnop, 2012: Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF. Atmos. Chem. Phys., 12, 309-325, doi:10.5194/acp-12-309-2012.
  10. Brugge, D., J. L. Durant, and C. Rioux, 2007: Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks. Environ. Health, 6, 23. https://doi.org/10.1186/1476-069X-6-23
  11. Buccolieri, R., M. Sandberg, and S. Di Sabatino, 2010:City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmos. Environ., 44, 1894-1903, doi:10.1016/j.atmosenv.2010.02.022.
  12. Chan, C., K. Chuang, G. Shiao, and L. Lin, 2004: Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ. Health Persp., 112, 1063-1067. https://doi.org/10.1289/ehp.6897
  13. Charron, A., and R. M. Harrison, 2003: Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ., 37, 4109-4119. https://doi.org/10.1016/S1352-2310(03)00510-7
  14. Capaldo, K., and S. Pandis, 2001: Lifetimes of ultrafine diesel aerosol, E-43 project diesel aerosol sampling methodology, Carnegie Mellon University, Pittsburgh, PA.
  15. Choi, W., and S. E. Paulson, 2016: Closing the ultrafine particle number concentration budget at road-to-ambient scale: implications for particle dynamics. Aerosol Sci. Tech., 50, 448-461, doi:10.1080/02786826.2016.1155104.
  16. Choi, W., A. M. Winer, and S. E. Paulson, 2014: Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions. Atmos. Chem. Phys., 14, 6925-6940, doi:10.5194/acp-14-6925-2014.
  17. Choi, W., D. Ranasinghe, J. R. DeShazo, J.-J. Kim, and S. E. Paulson, 2018: Where to locate transit stops: crossintersection profiles of ultrafine particles and implications for pedestrian exposure. Environ. Pollut., 233, 235-245, doi:10.1016/j.envpol.2017.10.055.
  18. Choi, W., M. He, V. Barbesant, K. H. Kozawa, S. Mara, A. M. Winer, and S. E. Paulson, 2012: Prevalence of wide area impacts downwind freeways under presunrise stable atmospheric conditions. Atmos. Environ., 62, 318-327, doi:10.1016/j.atmosenv.2012.07.084.
  19. Choi, W., S. S. Hu, M. He, K. H. Kozawa, S. Mara, A. M. Winer, and S. E. Paulson, 2013: Neighborhood-scale air quality impacts of emissions from motor vehicles and aircraft. Atmos. Environ., 80, 310-321, doi:10.1016/j.atmosenv.2013.07.043.
  20. Choi, W., D. Ranasinghe, K. Bunavage, J. R. DeShazo, L. Wu, R. Seguel, A. M. Winer, and S. E. Paulson, 2016: The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites. Sci. Total Environ., 553, 474-485, doi:10.1016/j.scitotenv.2016.02.083.
  21. Dall'Osto, M., X. Querol, A. Alastuey, C. O'Dowd, R. M. Harrison, J. Wenger, and F. J. Gomez-Moreno, 2013:On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmos. Chem. Phys., 2013, 741-759, doi:10.5194/acp-13-741-2013.
  22. Dall'Osto, M., and Coauthors, 2018: Novel insights on new particle formation derived from a pan-european observing system. Sci. Rep., 8, 1482, doi:10.1038/s41598-017-17343-9.
  23. Davidson, C. I., R. F. Phalen, and P. A. Solomon, 2005:Airborne particulate matter and human health: A review. Aerosol Sci. Tech., 39, 737-749. https://doi.org/10.1080/02786820500191348
  24. Goel, A., and P. Kumar, 2015a: Zone of influence for particle number concentrations at signalised traffic intersections. Atmos. Environ., 123, 25-38, doi:10.1016/j.atmosenv.2015.10.054.
  25. Goel, A., and P. Kumar, 2015b: Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ., 107, 374-390, doi:10.1016/j.atmosenv.2015.02.002.
  26. Gordon, T. D., and Coauthors, 2014: Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle. Atmos. Chem. Phys., 14, 4643-4659, doi:10.5194/acp-14-4643-2014.
  27. Griffin, R. J., 2003: Moving toward highly resolved air quality measurements in urban environments in Texas. U.S.-Iran Symposium on air pollution in megacities, Irvine, California, 106-111.
  28. Harrison, R. M., D. C. S. Beddows, and M. Dall'Osto, 2011: PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol., 45, 5522-5528, doi:10.1021/es2006622.
  29. Herner, J. D., S. Hu, W. H. Robertson, T. Huai, M. C. O. Chang, P. Rieger, and A. Ayala, 2009: Effect of advanced atftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions. Environ. Sci. Technol., 45, 2413-2419.
  30. Hoek, G., B. Brunekreef, S. Goldbohm, P. Fischer, and P. A. van den Brandt, 2002: Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet, 360, 1203-1209. https://doi.org/10.1016/S0140-6736(02)11280-3
  31. Hoek, G., and Coauthors, 2010: Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation. Environ. Sci. Technol., 44, 476-482, doi:10.1021/es9021393.
  32. Hu, S., S. Fruin, K. Kozawa, S. Mara, S. E. Paulson, and A. M. Winer, 2009a: A wide area of air pollutant impact downwind of a freeway during pre-sunrise hours. Atmos. Environ., 43, 2541-2549. https://doi.org/10.1016/j.atmosenv.2009.02.033
  33. Hu, S., S. Fruin, K. Kozawa, S. Mara, A. M. Winer, and S. E. Paulson, 2009b: Aircraft emission impacts in a neighborhood adjacent to a general aviation airport in southern california. Environ. Sci. Technol., 43, 8039-8045. https://doi.org/10.1021/es900975f
  34. Hu, S., S. E. Paulson, S. Fruin, K. Kozawa, S. Mara, and A. M. Winer, 2012: Observation of elevated air pollutant concentrations in a residential neighborhood of Los Angeles California using a mobile platform. Atmos. Environ., 51, 311-319, doi:10.1016/j.atmosenv.2011.12.055.
  35. Huang, C., D. Lou, Z. Hu, Q. Feng, Y. Chen, C. Chen, P. Tan, and D. Yao, 2013: A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles. Atmos. Environ., 77, 703-710, doi: 10.1016/j.atmosenv.2013.05.059.
  36. Hussein, T., A. Puustinnen, P. Aalto, J. M. Makela, K. Hameri, and M. Kulmala, 2004: Urban aerosol number size distributions. Atmos. Chem. Phys., 4, 391-411. https://doi.org/10.5194/acp-4-391-2004
  37. Hussein, T., and Coauthors, 2009: Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden. Atmos. Chem. Phys., 9, 4699-4716. https://doi.org/10.5194/acp-9-4699-2009
  38. Ibald-Mulli, A., H. E. Wichmann, W. Kreyling, and A. Peters, 2002: Epidemiological evidence on health effects of ultrafine particles. J. Aerosol Med., 15, 189-201. https://doi.org/10.1089/089426802320282310
  39. Imhof, D., and Coauthors, 2005: Vertical distribution of aerosol particles and NOx close to a motorway. Atmos. Environ., 39, 5710-5721. https://doi.org/10.1016/j.atmosenv.2004.07.036
  40. Jeong, C.-H., and Coauthors, 2010: Particle formation and growth at five rural and urban sites. Atmos. Chem. Phys., 10, 7979-7995, doi:10.5194/acp-10-7979-2010.
  41. Karner, A. A., D. S. Eisinger, and D. A. Niemeier, 2010: Near-roadway air quality: synthesizing the findings from real-world data. Environ. Sci. Technol., 44, 5334-5344, doi:10.1021/es100008x.
  42. Kerminen, V. M., and Coauthors, 2007: Development of particle number size distribution near a major road in Helsinki during an episodic inversion situation. Atmos. Environ., 41, 1759-1767. https://doi.org/10.1016/j.atmosenv.2006.10.026
  43. Kim, G., H.-J. Cho, A. Seo, D. Kim, Y. Gim, B. Y. Lee, Y. J. Yoon, and K. Park, 2015a: Comparison of hygroscopicity, volatility, and mixing state of submicrometer particles between cruises over the Arctic Ocean and the Pacific Ocean. Environ. Sci. Technol., 49, 12024-12035, doi:10.1021/acs.est.5b01505.
  44. Kim, J.-J., and J.-J. Baik, 2004: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-${\varepsilon}$ turbulence model. Atmos. Environ., 38, 3039-3048. https://doi.org/10.1016/j.atmosenv.2004.02.047
  45. Kim, J. H., S. S. Yum, S. Shim, W. J. Kim, M. Park, J.-H. Kim, M.-H. Kim, and S.-C. Yoon, 2014: On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula. Atmos. Chem. Phys., 14, 8763-8779, doi:10.5194/acp-14-8763-2014.
  46. Kim, K. H., D. Woo, S.-B. Lee, and G.-N. Bae, 2015b: On-road measurements of ultrafine particles and associated air pollutants in a densely populated area of Seoul, Korea. Aerosol. Air Qual. Res., 15, 142-153, doi:10.4209/aaqr.2014.01.0014.
  47. Kim, N., and Coauthors, 2017: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign. Atmos. Environ., 153, 217-232, doi:10.1016/j.atmosenv.2017.01.034.
  48. Kim, Y., S.-C. Yoon, S.-W. Kim, K.-Y. Kim, H.-C. Lim, and J. Ryu, 2013: Observation of new particle formation and growth events in Asian continental outflow. Atmos. Environ., 64, 160-168, doi:10.1016/j.atmosenv.2012.09.057.
  49. Kim, Y., and Coauthors, 2016: Characteristics of formation and growth of atmospheric nanopartcles observed at four regional background sites in Korea. Atmos. Res., 168, 80-91. https://doi.org/10.1016/j.atmosres.2015.08.020
  50. Kittelson, D. B., W. F. Watts, and J. P. Johnson, 2002: Diesel aerosol sampling methodology CRC E-43: Technical summary and conclusions, Coordinating Research Council, Alpharetta, GA.
  51. Kittelson, D. B., W. F. Watts, and J. P. Johnson, 2004: Nanoparticle emissions on Minnesota highways. Atmos. Environ., 38, 9-19. https://doi.org/10.1016/j.atmosenv.2003.09.037
  52. Kittelson, D. B., W. F. Watts, and J. P. Johnson, 2006a: On-road and laboratory evaluation of combustion aerosols - Part 1: summary of diesel engine results. J. Aerosol Sci., 37, 913-930. https://doi.org/10.1016/j.jaerosci.2005.08.005
  53. Kittelson, D. B., W. F. Watts, J. P. Johnson, J. J. Schauer, and D. R. Lawson, 2006b: On-road and laboratory evaluation of combustion aerosols - Part 2: Summary of spark iginition engine results. J. Aerosol Sci., 37, 931-949. https://doi.org/10.1016/j.jaerosci.2005.08.008
  54. Krudysz, M., K. Moore, M. Geller, C. Sioutas, and J. Froines, 2009: Intra-community spatial variability of particulate matter size distributions in Southern California/ Los Angeles. Atmos. Chem. Phys., 9, 1061-1075. https://doi.org/10.5194/acp-9-1061-2009
  55. Kulmala, M., H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V.-M. Kerminen, W.Birmili, and P. H. McMurry, 2004: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176. https://doi.org/10.1016/j.jaerosci.2003.10.003
  56. Kumar, P., A. Robins, S. Vardoulakis, and R. Britter, 2010:A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ., 44, 5035-5052. https://doi.org/10.1016/j.atmosenv.2010.08.016
  57. Kumar, P., B. R. Gurjar, A. Nagpure, and R. M. Harrison, 2011a: Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts. Environ. Sci. Technol., 45, 5514-5521, doi:10.1021/es2003183.
  58. Kumar, P., L. Pirjola, M. Ketzel, and R. M. Harrison, 2013:Nanoparticle emissions from 11 non-vehicle exhaust sources - A review. Atmos. Environ., 67, 252-277, doi:10.1016/j.atmosenv.2012.11.011.
  59. Kumar, P., M. Ketzel, S. Vardoulakis, L. Pirjola, and R. Britter, 2011b: Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. J. Aerosol Sci., 42, 580-603, doi:10.1016/j.jaerosci.2011.06.001.
  60. Kumar, P., L. Morawska, W. Birmili, P. Paasonen, M. Hu, M. Kulmala, R. M. Harrison, L. Norford, and R. Britter, 2014: Ultrafine particles in cities. Environ. Int., 66, 1-10, doi:10.1016/j.envint.2014.01.013.
  61. Lauros, J., A. Sogachev, S. Smolander, H. Vuollekoski, S.-L. Sihto, I. Mammarella, L. Laakso, U Rannik, and M. Boy, 2011: Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism. Atmos. Chem. Phys., 11, 5591-5601, doi:10.5194/acp-11-5591-2011.
  62. Leaitch, W. R., and Coauthors, 2013: Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elementa, 1, 000017, doi:10.12952/journal.elementa.000017.
  63. Lee, E. S., D. R. Ranasinghe, F. E. Ahangar, S. Amini, S. Mara, W. Choi, S. Paulson, and Y. Zhu, 2018: Field evaluation of vegetation and noise barriers for mitigation of nearfreeway air pollution under variable wind conditions. Atmos. Environ., 175, 92-99, doi:10.1016/j.atmosenv.2017.11.060.
  64. Lianou, M., and Coauthors, 2007: Dependence of home outdoor particulate mass and number concentrations in residential and traffic features in urban areas. J. Air Waste Manag. Assoc., 57, 1507-1517. https://doi.org/10.3155/1047-3289.57.12.1507
  65. Liu, C.-H., M. C. Barth, and D. Y. C. Leung, 2004: Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-street-width ratios J. Appl. Meteorol., 43, 1410-1424. https://doi.org/10.1175/JAM2143.1
  66. Maskey, S., J.-S. Kim, H.-J. Cho, and K. Park, 2012: Ultrafine particle events in the ambient atmosphere in Korea. Asian J. Atmos. Environ., 6, 288-303, doi:10.5572/ajae.2012.6.4.288.
  67. Mazaheri, M., G. R. Johnson, and L. Morawska, 2009: Particle and gaseous emissions from commercial aircraft at each stage of the landing and takeoff cycle. Environ. Sci. Technol., 43, 441-446. https://doi.org/10.1021/es8013985
  68. McMurry, P., and K. Woo, 2002: Size distributions of 3-100-nm urban Atlanta aerosols: measurements and observations. J. Aerosol Med., 15, 169-178. https://doi.org/10.1089/089426802320282293
  69. Mejia, J., D. Wraith, K. Mengersen, and L. Morawska, 2007: Trends in size classified particle number concentration in subtropical Brisbane, Australia, based on a five year study. Atmos. Environ., 41, 1064-1079. https://doi.org/10.1016/j.atmosenv.2006.09.020
  70. MOLIT, 2018: Press Release, Ministry of Land, Infrastructure and Transport, Korea. [Available online at http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95080239] (in Korean).
  71. Moore, K., M. Krudysz, P. Pakbin, N. Hudda, and C. Sioutas, 2009: Intra-community variability in total particle number concentrations in the San Pedro Harbor Area (Los Angeles, California). Aerosol Sci. Tech., 43, 587-603. https://doi.org/10.1080/02786820902800900
  72. Morawska, L., Z. Ristovski, G. Johnson, E. R. Jayaratne, and K. Mengersen, 2007: Novel method for on-road emission factor measurements using a plume capture trailer. Environ. Sci. Technol., 41, 574-579. https://doi.org/10.1021/es060179z
  73. Morawska, L., Z. Ristovski, E. R. Jayaratne, D. U. Keogh, and X. Ling, 2008: Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ., 42, 8113-8138. https://doi.org/10.1016/j.atmosenv.2008.07.050
  74. Nel, A., T. Xia, L. Madler, and N. Li, 2006: Toxic potential of materials at the nanolevel. Science, 311, 622-627. https://doi.org/10.1126/science.1114397
  75. Nilsson, E. D., U. Rannik, M. Kulmala, G. buzorius, and C. O'Dowd, 2001: Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus, 53, 441-461. https://doi.org/10.3402/tellusb.v53i4.16617
  76. O'Dowd, C. D., and T. Hoffmann, 2005: Coastal new particle formation: A review of the current state-of-the-art. Environ. Chem., 2, 245-255. https://doi.org/10.1071/EN05077
  77. O'Dowd, C. D., and Coauthors, 2002: A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements. J. Geophys. Res. Atmos., 107, 8108. https://doi.org/10.1029/2001JD000555
  78. O'Dowd, C. D., and Coauthors, 2004: Biogenically driven organic contribution to marine aerosol. Nature, 431, 676-680. https://doi.org/10.1038/nature02959
  79. Oberdorster, G., 2000: Toxicology of ultrafine particles: in vivo studies. Philos. T. Roy. Soc. A, 358, 2719-2739. https://doi.org/10.1098/rsta.2000.0680
  80. Oberdorster, G., E. Oberdorster, and J. Oberdorster, 2005: Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp., 113, 823-839. https://doi.org/10.1289/ehp.7339
  81. Paasonen, P., A. Visshedjik, K. Kupiainen, Z. Klimont, H. D. van der Gon, and M. Kulmala, 2013: Aerosol particle number emissions and size distributions:implementation in the GAINS model and initial results. IIASA Interim Report, 28 pp.
  82. Park, K., J. Y. Park, J.-H. Kwak, G. N. Cho, and J.-S. Kim, 2008: Seasonal and diurnal variations of ultrafine particle concentration in urban Gwangju, Korea: Observation of ultrafine particle events. Atmos. Environ., 42, 788-799. https://doi.org/10.1016/j.atmosenv.2007.09.068
  83. Pierce, J. R., I. Riipinen, M. Kulmala, M. Ehn, T. Petaja, H. Junninen, D. R. Worsnop, and N. M. Donahue, 2011: Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmos. Chem. Phys., 11, 9019-9036, doi:10.5194/acp-11-9019-2011, 2011.
  84. Pirjola, L., and Coauthors, 2006: Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmos. Environ., 40, 867-879. https://doi.org/10.1016/j.atmosenv.2005.10.018
  85. Quiros, D. C., Q. Zhang, W. Choi, M. He, S. E. Paulson, A. M. Winer, R. Wang, and Y. Zhu, 2013: Air quality impacts of a scheduled 36-hour closure of a major highway. Atmos. Environ., 67, 404-414, doi:10.1016/j.atmosenv.2012.10.020.
  86. Reche, C., and Coauthors, 2011: New considerations for PM, black carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys., 11, 6207-6227, doi:10.5194/acp-11-6207-2011.
  87. Ristovski, Z. D., E. R. Jayaratne, M. Lim, G. A. Ayoko, and L. Morawska, 2006: Influence of diesel fuel sulfur on nanoparticle emissions from city buses. Environ. Sci. Technol., 40, 1314-1320. https://doi.org/10.1021/es050094i
  88. Robinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis, 2007: Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science, 315, 1259-1262. https://doi.org/10.1126/science.1133061
  89. Ronkko, T., A. Virtanen, K. Vaaraslahti, J. Keskinen, L. Pirjola, and M. Lappi, 2006: Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: Laboratory and on-road study. Atmos. Environ., 40, 2893-2901. https://doi.org/10.1016/j.atmosenv.2006.01.002
  90. Ruehl, C., and Coauthors, 2018: Emissions during and real-world frequency of heavy-duty diesel particulate filter regeneration. Environ. Sci. Technol., 52, 5868-5874, doi:10.1021/acs.est.7b05633.
  91. Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Willey, 1326 pp.
  92. Sioutas, C., R. J. Delfino, and M. Singh, 2005: Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Persp., 113, 947-955. https://doi.org/10.1289/ehp.7939
  93. Song, M., M. Lee, J. H. Kim, S. S. Yum, G. Lee, and K.-R. Kim, 2010: New particle formation and growth in relation to vertical mixing and chemical species during ABC-EAREX2005. Atmos. Res., 97, 359-370, doi:10.1016/j.atmosres.2010.04.013.
  94. Song, S., D. Paek, Y.-M. Lee, C. Lee, C. Park, and S.-D. Yu, 2012: Ambient fine and ultrafine particle measurements and their correlations with particulate PAHs at an elementary school near a highway. Asian J. Atmos. Environ., 6, 96-103, doi:10.5572/ajae.2012.6.2.096.
  95. Timko, M. T., E. Fortner, J. Franklin, Z. Yu, H.-W. Wong, T. B. Onasch, R. C. Miake-Lye, and S. C. Herndon, 2013: Atmospheric measurements of the physical evolution of aircraft exhaust plumes. Environ. Sci. Technol., 47, 3513-3520, doi:10.1021/es304349c.
  96. Tonne, C., S. Melly, M. Mittleman, B. Coull, R. Boldberg, and J. Schwartz, 2007: A case-control analysis of exposure to traffic and acute myocardial infarction. Environ. Health Persp., 115, 53-57. https://doi.org/10.1289/ehp.9587
  97. Tunved, P., and Coauthors, 2006: High natural aerosol loading over boreal forests. Science, 312, 261-263. https://doi.org/10.1126/science.1123052
  98. Wang, Y. J., and K. M. Zhang, 2009: Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. Environ. Sci. Technol., 43, 7778-7783. https://doi.org/10.1021/es9014844
  99. Weber, R., J. J. Marti, P. H. McMurry, F. L. Eisele, D. J. Tanner, and A. Jefferson, 1997: Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J. Geophys. Res. Atmos., 102, 4375-4386. https://doi.org/10.1029/96JD03656
  100. Weber, R., and Coauthors, 1998: A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1. J. Geophys. Res. Atmos., 103, 16385-16396. https://doi.org/10.1029/97JD02465
  101. Willis, M. D., and Coauthors, 2016: Growth of nucleation mode particles in the summertime Arctic: a case study. Atmos. Chem. Phys., 16, 7663-7679, doi:10.5194/acp-16-7663-2016.
  102. Wilson, J. G., S. Kingham, J. Pearce, and A. Sturnman, 2005: A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmos. Environ., 39, 6444-6462. https://doi.org/10.1016/j.atmosenv.2005.07.030
  103. Wilson, W. E., and Coauthors, 1977: General MOtors sulfate dispersion experiment - summary of EPA measurements. J. Air Pollut. Control Assoc., 27, 46-51. https://doi.org/10.1080/00022470.1977.10470391
  104. Woo, D., S.-B. Lee, G.-N. Bae, and T. Kim, 2008: Comparison of ultrafine particles monitored at a roadside using an SMPS and a TR-DMPS. J. Korean Soc. Atmos. Environ., 24, 404-414. https://doi.org/10.5572/KOSAE.2008.24.4.404
  105. Woo, K. S., D. R. Chen, D. Y. H. Pui, and P. H. McMurry, 2001: Measurements of Atlanta aerosol size distributions:observations of ultrafine particle events. Aerosol Sci. Tech., 34, 75-87. https://doi.org/10.1080/02786820120056
  106. You, J. H., and Coauthors, 2007: The study on the emission characteristics and the test method establishment of nano-particles in a heavy-duty vehicle, NIER No. 2007-45-901, National Institute of Environmental Research, Incheon.
  107. Zhang, K. M., and A. S. Wexler, 2004: Evolution of particle number distribution near roadways - Part I: analysis of aerosol dynamics and its implications for engine emission measurement. Atmos. Environ., 38, 6643-6653. https://doi.org/10.1016/j.atmosenv.2004.06.043
  108. Zhang, K. M., A. S. Wexler, Y. F. Zhu, W. C. Hinds, and C. Sioutas, 2004: Evolution of particle number distribution near roadways. Part II: the 'road-to-ambient' process. Atmos. Environ., 38, 6655-6665. https://doi.org/10.1016/j.atmosenv.2004.06.044
  109. Zhu, Y. F., W. C. Hinds, S. Shen, and C. Sioutas, 2004:Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles. Aerosol Sci. Tech., 38, 5-13. https://doi.org/10.1080/02786820390229156
  110. Zhu, Y. F., E. Fanning, R. C. Yu, Q. F. Zhang, and J. R. Froines, 2011: Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atmos. Environ., 45, 6526-6533, doi:10.1016/j.atmosenv.2011.08.062.

Cited by

  1. Comparison of Transit User’s Inhalation Rates of PM2.5 between Three Transportation Types (Walk, Bus, Subway) in Spring and Summer in Urban Areas of Busan, Korea vol.35, pp.5, 2019, https://doi.org/10.5572/KOSAE.2019.35.5.577