DOI QR코드

DOI QR Code

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Received : 2018.08.27
  • Accepted : 2018.09.05
  • Published : 2018.09.30

Abstract

The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

Keywords

References

  1. Anderson KA, Milton DW, Balloon observations of X rays in the auroral zone: 3. high time resolution studies, J. Geohpys. Res. 69, 4457-4479 (1964). https://doi.org/10.1029/JZ069i021p04457
  2. Bethe H, Ashkin J, Passage of radiations through matter, in Experimental Nuclear Physics, vol. 1, ed. Segre E (Wiley, New York, 1953), 166-357.
  3. Choi CR, Sohn JD, Lee JC, Seo YM, Kang SB, et al., Scientific Missions and Technologies of the ISSS on board the NEXTSat-1, J. Astron. Space Sci. 31, 73-81 (2014). https://doi.org/10.5140/JASS.2014.31.1.73
  4. Crew AB, Spence HE, Blake JB, Klumpar DM, Larsen BA, et al., First multipoint in situ observations of electron microbursts: Initial results from the NSF FIREBIRD II mission, J. Geophys. Res. 121, 5272-5283 (2016). https://doi.org/10.1002/2016JA022485
  5. ICRU, ICRU Report 16: Linear Energy Transfer (Oxford University Press, London, 1970), 2-5.
  6. Imhof WL, Voss HD, Mobilia, J, Datlowe DW, Gaines EE, et al., Relativistic electron microbursts, J. Geophys. Res. 97, 13829-13837 (1992). https://doi.org/10.1029/92JA01138
  7. Jo GB, Sohn JD, Choi CR, Yi Y, Min KW, et al., Development of high energy particle detector for the study of space radiation storm, J. Astron. Space Sci. 31, 277-283 (2014). https://doi.org/10.5140/JASS.2014.31.3.277
  8. Jung J, Oh S, Yi Y, Evenson P, Pyle R, et al., Installation of neutron monitor at the Jang Bogo station in Antarctica, J. Astron. Space Sci. 33, 345-348 (2016). https://doi.org/10.5140/JASS.2016.33.4.345
  9. Kim EJ, Sohn JD, Yi Y, Ogino T, Lee JH, et al., Martian bow shock and magnetic pile-up barrier formation due to the exosphere ion mass-loading, J. Astron. Space Sci. 28, 17-26 (2011). https://doi.org/10.5140/JASS.2011.28.1.017
  10. Kim SY, Yi Y, Hong IS, Sohn JD, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2017.35.1.47
  11. Lee JJ, Parks GK, Min K, Kim H, Park J, et al., Energy spectra of -170-360 keV electron microbursts measured by the Korean STSAT-1, Geophys. Res. Lett. 32, L13106 (2005). https://doi.org/10.1029/2005GL022996
  12. Lee JJ, Parks GK, Min K, McCarthy MP, Lee ES, et al., Relativistic electron dropouts by pitch angle scattering in the geomagnetic tail, Ann. Geophys. 24, 3151-3159 (2006). https://doi.org/10.5194/angeo-24-3151-2006
  13. Moon BH, Jeong DG, Oh S, Sohn, JD, Variation in solar limb darkening coefficient estimated from solar images taken by SOHO and SDO, J. Astron. Space Sci. 34, 99-103 (2017). https://doi.org/10.5140/JASS.2017.34.2.99
  14. Nakamura R, Isowa M, Kamide Y, Baker DN, Blake JB, et al., SAMPEX observations of precipitation bursts in the outer radiation belt, J. Geophys. Res. 105, 15875-15885 (2000). https://doi.org/10.1029/2000JA900018
  15. Park KC, Lee JW, Yi Y, Lee JJ, Sohn JD, Characteristics of solar wind density depletions during solar cycles 23 and 24, J. Astron. Space Sci. 34, 105-110 (2017). https://doi.org/10.5140/JASS.2017.34.2.105.
  16. Parks GK, Microburst precipitation phenomena, J. Geomagn. Geoelectr. 30, 327-341 (1978). https://doi.org/10.5636/jgg.30.327
  17. Shin GH, Chae JS, Lee SH, Min KW, Sohn JD, et al., Operational concept of the NEXTSat-1 for science mission and space core technology verification, J. Astron. Space Sci. 31, 67-72 (2014a). https://doi.org/10.5140/JASS.2014.31.1.67
  18. Shin GH, Chae JS, Min KW, Sohn JD, Jeong WS, et al., Communications link design and analysis of the NEXTSat-1 for SoH file and mission data using CAN bus, UART and SerDesLVDS, J. Astron. Space Sci. 31, 235-240 (2014b). https://doi.org/10.5140/JASS.2014.31.3.235
  19. Sohn JD, Oh SY, Yi Y, Min KW, Lee DY, et al., A design of solar proton telescope for next generatioin small satellite, J. Astron. Space Sci. 29, 343-349 (2012). https://doi.org/10.5140/JASS.2012.29.4.343
  20. Sohn JD, Lee JJ, Min KW, Lee JC, Lee SU, et al., HEPD on NEXTSat-1: a high energy particle detector for measurements of precipitating radiation belt electrons, J. Korean Phys. Soc. 72, 1086-1093 (2018). https://doi.org/10.3938/jkps.72.1086
  21. Sullivan JD, Geometrical factor and directional response of single and multi-element particle telescope, Nucl. Instrum. Method. 95, 5-11 (1971). https://doi.org/10.1016/0029-554X(71)90033-4