Survival and Physiological Responses of Red Sea Bream Pagrus major with Decreasing Sea Water Temperature

수온 하강에 따른 참돔, Pagrus major의 생존율 및 생리 반응

  • 신윤경 (국립수산과학원 남동해수산연구소) ;
  • 김영대 (국립수산과학원 남동해수산연구소) ;
  • 김원진 (국립수산과학원 남동해수산연구소)
  • Received : 2018.08.31
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

Decrease in seawater temperature during winter is one of the most important and serious issues confronted by fish net-cage aquaculture farms. This can become the cause of the manifestation of diseases and ensuing mass mortality. The present study was conducted to assess the survival rate, the range of limited low-temperature, the response of oxidative stress in the blood of red sea bream Pagrus major with decrease of water temperature. Low-lethal temperature for 7 days of P. major ($7day-LT_{50}$) was $6.54^{\circ}C$ (confidence limit: $6.31{\sim}6.71^{\circ}C$). Oxygen consumption rate was decreased with lower temperature. It showed the minimum value at the range of low-lethal temperature. Osmolality at $5^{\circ}C$ and $6^{\circ}C$ experimental group was higher significantly than control group. SOD (superoxide dismutase) activity was increased significantly at $5^{\circ}C$ experimental group compared to control group. This study data will be used to determine the appropriate area for aquaculture of red sea bream. It also manage fish net-cage farm to cope with the mass mortality occurring frequently during winter season.

겨울철 수온의 변동으로 우리나라 남해안 연안에 위치하고 있는 어류가두리 양식장에서 관리하고 있는 어류의 폐사가 빈번하게 발생하고 있다. 본 연구는 온대성 어류인 참돔을 대상으로 저수온 하한내성 범위 및 수온 하강에 따른 호흡률, 암모니아질소 배설률과 혈액내 산화스트레스 반응을 조사하였다. 참돔의 하한내성수온은 $6.54^{\circ}C$(95% 신뢰한계: $6.31{\sim}6.76^{\circ}C$)였다. 산소소비율은 수온 하강에 따라 감소하였으며, 하한수온에서 최저치를 나타내었다. 혈액 내 삼투질농도는 수온 $5^{\circ}C$$6^{\circ}C$에서 대조구에 비해 유의한 증가를 나타내었다. 혈액 내 SOD는 모든 실험구 가운데 수온 $5^{\circ}C$에서 유의하게 활성 증가가 나타났다. 본 연구의 결과는 참돔을 양식할 수 있는 지역선정 및 겨울철 발생하는 동계 폐사원인 규명을 위한 자료로도 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Bowden, T.J. 2008. Modulation of the immune system of fish by their environment. Fish & Shellfsh Immunol., 25: 373-383. https://doi.org/10.1016/j.fsi.2008.03.017
  2. Cheng, C.H., C.X. Ye, Z.X. Guo and A.L. Wang. 2017. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish & Shellfsh Immunol., 64: 137-145. https://doi.org/10.1016/j.fsi.2017.03.003
  3. Choi, H.S., S.H. Jung, Y.B. Hur and J.Y. Yang. 2008. Study on the winter mass mortality of red sea bream, Pagrus major in the South sea area. J. Fish Pathol., 21: 35-43. (in Korean)
  4. Dalvi, R.S., A.K. Pal, L.R. Tiwari, T. Das and K. Baruah. 2009. Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Gunther) acclimated to different temperatures. Aquaculture, 295: 116-119. https://doi.org/10.1016/j.aquaculture.2009.06.034
  5. Debnath, D., A.K. Pal, N.P. Sahy, K. Baruah, S. Yengkokpam, T. Das and S. Manush. 2006. Thermal tolerance and metabolic activity of yellowtail catfish Pangasius pangasius (Hamilton) advanced fngerlings with emphasis on their culture potential. Aquaculture, 258: 606-610. https://doi.org/10.1016/j.aquaculture.2006.04.037
  6. Donaldson, M.R., S.J. Cooke, D.A. Patterson and J.S. Macdonald. 2008. Cold shock and fsh. J. Fish Biol., 73: 1491-1530. https://doi.org/10.1111/j.1095-8649.2008.02061.x
  7. Ellis, T.A., J.A. Buckel, J.E. Hightower and S.J. Poland. 2017. Relating cold tolerance to winterkill for spotted seatrout at its northern latitudinal limits. J. Expt. Mar. Biol. Ecol., 490: 42-51. https://doi.org/10.1016/j.jembe.2017.01.010
  8. Finney, D.J. 1971. Probit Analysis. 3rd. London, Cambridge University Press, p. 333.
  9. Ford, T. and T.L. Beitinger. 2005. Temperature tolerance in the goldfsh, Carassius auratus. J. Thermal Biol., 30: 147-152. https://doi.org/10.1016/j.jtherbio.2004.09.004
  10. Hazel, J.R. and C.L. Prosser. 1974. Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev., 54: 620-677. https://doi.org/10.1152/physrev.1974.54.3.620
  11. Haure, J., C. Penisson, S. Bougrier and J.P. Baud. 1998. Infuence of temperature on clearance and oxygen consumption rates of the fat oyster Ostrea edulis: determination of allometric coeffcients. Aquaculture, 169: 211-224. https://doi.org/10.1016/S0044-8486(98)00383-4
  12. Hermes-Lima, M., J.M. Storey and K.B. Storey. 1998. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails, Comp. Biochem. Physiol., 120: 437-448. https://doi.org/10.1016/S0305-0491(98)10053-6
  13. Hochachka, P.W. and G.N. Somero. 1971. Biochemical adaptation to the environment. In: Hoar, W.S. and D.J. Randall (Eds.). Fish physiology. Academic Press, New York and London, 100-148.
  14. Hurst, T.P. 2007. Causes and consequences of winter mortality in fshes. J. Fish Biol., 71: 315-345. https://doi.org/10.1111/j.1095-8649.2007.01596.x
  15. Jiang, W.W., J.Q. Li, Y.P. Gao, Y.Z. Mao, Z.J. Jinag, M.R. Du, Y. Zang and J.G. Fang. 2016. Effects of temperature change on physiological and biochemical responses of Yesso scallop, Patinopecten yessoensis, Aquaculture, 451: 463-472. https://doi.org/10.1016/j.aquaculture.2015.10.012
  16. Kir, M., M.C. Sunar, and B.C. Altindag. 2017. Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperature. J. Thermal Bio., 65, 125-129. https://doi.org/10.1016/j.jtherbio.2017.02.018
  17. Luo, S.W., L. Cai, Y. Liu and W.N. Wang. 2014. Functional analysis of a dietary recombinant fatty acid binding protein 10 (FABP 10) on the Epinephrlus coioidesin response to acute low temperature challenge. Fish & Shellfsh Immunol., 36: 475-484. https://doi.org/10.1016/j.fsi.2013.12.028
  18. Madeira, D., L. Narciso, H.N. Cabral, C. Vinagre and M.S. Diniz. 2013. Influence of temperature in thermal and oxidative stress responses in estuarine fsh. Comp. Biochem. Physiol., Part A, 166: 237-243. https://doi.org/10.1016/j.cbpa.2013.06.008
  19. MERI, Report of marine ecology research institute. 2000. 2: A-79.
  20. NIFS, National Institute of Fisheries Science. 2018. Information system of real time sea water temperature. http://www.nifs.go.kr/risa/main.risa.
  21. Overstreet, R.M. 1974. An estuarine low-temperature fish-kill in Mississippi, with remarks on restricted necropsies. Gulf Res. Rep., 4: 328-350.
  22. Parihar, M.S., T. Javeri, T. Hemnani, A.K. Dubey and P. Prakash. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defences in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J. Thermal Biol., 22: 151-156. https://doi.org/10.1016/S0306-4565(97)00006-5
  23. Rajaguru, S. and S. Ramachandran. 2001. Temperature of some estuarine fshes. J. Thermal Bio., 26: 41-45. https://doi.org/10.1016/S0306-4565(00)00024-3
  24. Read, K.R.H. 1982. Respiration of the bivalve molluscs Mytilus edulis L. and Brachidontes demissus plicatulus Lam. as a function of size and temperature. Comp. Biochem. Physiol., 7: 89-101.
  25. Saucedo, P.E., L. Ocampo, M. Monteforte and H. Bervera. 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother of pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture, 229: 377-387. https://doi.org/10.1016/S0044-8486(03)00327-2
  26. Sollid, J., R.E. Weber and G.E. Nilsson. 2005. Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfsh Carassius auratus. J. Exp. Biol., 208: 1109-1116. https://doi.org/10.1242/jeb.01505
  27. Solorzano, L. 1969. Determination of ammonia in natural waters by the phenol- hypochlorite method. Limnol. Oceanogr., 14: 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  28. Stanley, J.G. and P.J. Colby. 1971. Effects of temperature on electrolyte balance and osmoregulation in the alewife (Alosa pseudoharengus) in fresh and sea water. Trans. Am. Fish Soc., 100: 624-638. https://doi.org/10.1577/1548-8659(1971)100<624:EOTOEB>2.0.CO;2
  29. Tian, X., S. Dong, F. Wang and L. Wu. 2004. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. J. Exptl. Mar. Biol. and Ecol., 310: 59-72. https://doi.org/10.1016/j.jembe.2004.04.002
  30. Widdows, J. 1973. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus deulis. Mar. Biol., 20: 276-296.
  31. Woodhead, P.M. and A.D. Woodhead, 1959. The effects of low temperatures on the physiology and distribution of the cod, Gadus morhua L. in the Barents Sea. P. Zool. Soc. Lond., 133: 181-199.
  32. Yoo, S.K. 2000. Mariculture. Guduk Publishing Co., 570-590.