DOI QR코드

DOI QR Code

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea

울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석

  • Hwang, Sang Koo (Department of Earth and Environmental Sciences, Andong National University) ;
  • Lee, So-Jin (Department of Earth and Environmental Sciences, Andong National University) ;
  • Han, Kee Hwan (Seojeong Engineering Limited Company)
  • 황상구 (안동대학교 지구환경과학과) ;
  • 이소진 (안동대학교 지구환경과학과) ;
  • 한기환 (주식회사 서정엔지니어링)
  • Received : 2018.08.29
  • Accepted : 2018.10.17
  • Published : 2018.10.31

Abstract

We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.

울릉도 말잔등응회암의 화성쇄설층에 대해 입도측정과 구성원 분석을 수행하고 주요 분화유형과 역학적 기구를 해석하였다. 말잔등응회암은 나리 칼데라 외측부에서 3개 멤버로 구분되며, 각 멤버는 하부에 조립 응회암층 및 라필리암층과 상부에 부석층 등의 암상으로 구성된다. 응회암층 및 라필리암층은 순수한 부석층과 구별되는 입도 및 구성원의 정량적 증거를 나타낸다. 응회암층 및 라필리암층은 부석층에 비하여 암편/본질 비와 결정/본질 비의 상대적 증가, 본질 부분의 우세한 파쇄작용 등의 특징을 가진다. 응회암층 및 라필리암층에서 암편과 결정의 풍부성은 지하수의 폭발적 기화로 주인암의 우세 파쇄작용, 체공 중에 세립물질의 제거에 의한 암편 및 결정의 간접적 농집과 같은 이유 때문일 수 있다. 위의 자료는 수증기마그마성 분화가 앞서 일어났고 마그마성 분화가 뒤따라 일어났음을 나타낸다. 즉 응회암층 및 라필리암층은 지하수가 화도로 접근하여 마그마가 물과 폭발적 상호작용에서 유래되는 수증기마그마성 분화(수증기플리니언 분화)를 암시하며, 부석층은 본질 가스압에 의한 마그마성 폭발작용(플리니언 분화)에서 유래되는 화성쇄설물을 나타낸다. 결론적으로 초기에는 마그마 기둥이 낮을 때 정압수가 화도에 접근하여 마그마와 폭발적인 상호작용으로 수증기플리니언 분화를 일으켰으며, 후기에 마그마 기둥의 상승으로 마그마성 가스압이 지하수압보다 커져 화구로의 지하수 접근을 차단함으로서 마그마성 휘발성물질에 의해서만 일어나는 플리니언 분화로 전환되었다.

Keywords

Acknowledgement

Grant : 기상.지진See-At기술개발연구

Supported by : 기상청

References

  1. Arai, F., Oba, T., Kitazato, H., Horibe, Y. and Machida, H., 1981, Late Quaternary tephrochronology and paleo-oceanography of the sediments of the Japan Sea. The Quaternary Research, 20, 209-230. https://doi.org/10.4116/jaqua.20.209
  2. Arce, J.L., Cervantes, K.E., Macias, J.L. and Mora, J.C., 2005, The 12.1 ka Middle Toluca Pumice: A dacitic plinian-subplinian eruption of Nevada de Toluca in Central Mexico. Journal of Volcanology and Geothermal Research, 147, 125-143. https://doi.org/10.1016/j.jvolgeores.2005.03.010
  3. Basu, A.R., Huang, W.K., Zie, G.H. and Tatsumoto, M., 1991, Major element, REE, and Pb, Nd, and Sr isotopic geochemistry of Cenozoic volcanic rocks of Eastern China: implications for origin from suboceanictype mantle reservoirs. Earth and Planetary Science Letters, 105, 149-169. https://doi.org/10.1016/0012-821X(91)90127-4
  4. Brenna, M., Price, R., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., Kim, G.B. and Maas, R., 2014, Final magma storage depth modulation of explosivity and trachyte-phonolite genesis at an intraplate volcano: a case study from Ulleung Island, South Korea. Journal of Petrology, 55, 709-747. https://doi.org/10.1093/petrology/egu004
  5. Eichelberger, J.C. and Koch, F.G., 1979, Lithic fragments in the Bandelier Tuff, Jemez Mountains, New Mexico. Journal of Volcanology and Geothermal Research, 5, 115-134. https://doi.org/10.1016/0377-0273(79)90036-2
  6. Harumoto, A., 1970, Volcanic rocks and associated rocks of Utsuryoto island. Nippon Printing and Publishing Co., 39.
  7. Hwang, S.K., Hwang, J.H. and Kwon, C.W., 2012, Geological report of the Ulleung Sheet. Korea Institute of Geoscience and Mineral Resources, 84 p.
  8. Hwang, S.K. and Jo, I.H., 2014, Petrologic Evolution Processes of the Latest Volcanic Rocks in Ulleung Island, East Sea. Journal of the Geological Society of Korea, 50, 343-363 (in Korean with English abstract).
  9. Hwang, S.K., Kim, J.H. and Jang, Y., 2017, Volcanism and Petrogenesis of Dodong Basaltic Rocks in the Ulleung Island, East Sea. Journal of Petrological Society of Korea, 26, 361-371 (in Korean with English abstract).
  10. Im, J.H., Shim, S.H., Choo, C.O., Jang, Y.D. and Lee, J.S., 2012, Volcanological and paleoenvironmental implications of charcols of the Nari Formation in Nari Caldera, Ulleung Island, Korea. Geosciences Journal, 16, 105-114. https://doi.org/10.1007/s12303-012-0020-9
  11. Kieffer, S.W., 1984, Factors governing the structure of volcanic jets. In: Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, 143-157.
  12. Kim, G.B., Cronin, S.J., Yoon, W.S. and Sohn, Y.K., 2014, Post 19 ka B.P. eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence. Bulletin of Volcanology, 76, 802-828. https://doi.org/10.1007/s00445-014-0802-1
  13. Kim, G.B., Yoon, S.H., Chough, S.K., Kwon, Y.K. and Ryu, B.J., 2011, Seismic reflection study of acoustic basement in the South Korea Plateau, the Ulleung Interplain Gap, and the northern Ulleung Basin: volcanotectonic implications for Tertiary back-arc evolution in the southern East Sea. Tectonophysics, 504, 43-56. https://doi.org/10.1016/j.tecto.2011.02.004
  14. Machida, H., Arai, F., Lee, B.S., Moriwaki, H. and Furuta, T., 1984, Late Quaternary tephras in Ulreungdo Island, Korea. Journal of Geography, 93, 1-14. https://doi.org/10.5026/jgeography.93.1
  15. Min, K.D., Kim, O.J., Yun, S., Lee, D.S. and Kim, K.H., 1988, Applicability of plate tectonics to the post-Late Cretaceous igneous activity and mineralization in the southern part of South Korea (II). Journal of the Geological Society of Korea, 24, 11-40 (in Korean with English abstract).
  16. Okuno, M., Shiihara, M., Torii, M., Nakamura, T., Kim, K.H., Domitsu, H., Moriwaki, H. and Oda, M., 2010, AMS radiocarbon dating of Holocene tephra layers on Ulleung Island, South Korea. Radiocarbon, 52, 1465-1470. https://doi.org/10.1017/S0033822200046555
  17. Peng, Z.C., Zartman, R.E., Futa, K. and Chen, D.G., 1986, Pb-, Sr-, and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology, 59, 3-33. https://doi.org/10.1016/0168-9622(86)90054-0
  18. Self, S. and Sparks, R.S.J., 1978, Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bulletin of Volcanology, 41, 1-17. https://doi.org/10.1007/BF02597679
  19. Sheridan, M.F., Barberi, F., Rosi, M. and Santacroce, R., 1981, A model for plinian eruption of Vesuvius. Nature, 289, 282-285. https://doi.org/10.1038/289282a0
  20. Sheridan, M.F. and Wohletz, K., 1981, Hydrovolcanic explosions: the systematics of water-pyroclast equilibrium. Science. 212, 1387-1389. https://doi.org/10.1126/science.212.4501.1387
  21. Sheridan, M.F. and Wohletz, K., 1983, Hydrovolcanism: basic considerations and review. In: M. Sheridan and F.Barberi (Editors), Explosive volcanism. Journal of Volcanology and Geothermal Research, 17, 1-29. https://doi.org/10.1016/0377-0273(83)90060-4
  22. Shiihara, M., Torii, M., Okuno, M., Domitsu, H., Nakamura, T., Kim, K.H., Moriwaki, H. and Oda, M., 2011, Revised stratigraphy of Holocene tephras on Ulleung Island, South Korea, and possible correlatives for the U-Oki tephra. Quaternary International, 246, 222-232. https://doi.org/10.1016/j.quaint.2011.08.030
  23. Shimozuru, D., 1978, Dynamics of magma in a volcanic conduit: special emphasis on viscosity of magma with bubbles. Bulletin of Volcanology, 41, 333-340. https://doi.org/10.1007/BF02597368
  24. Sigurdsson, H., Carey, S. and Fisher, R.V., 1987, The 1982 eruption of EL Chichon volcano, Mexico (3): Physical properties of pyroclastic surges. Bulletin of Volcanology, 49, 467-488. https://doi.org/10.1007/BF01245474
  25. Song, Y.-S., Park, M.-E. and Park, K.-H., 2006, Ages and evolutions of the volcanic rocks from Ulleung-do and Dok-do. Journal of Petrological Society of Korea, 15, 72-80 (in Korean with English abstract).
  26. Sparks, R.S.J., 1978, The dynamics of bubble formation and growth in magmas: a review and analysis. Journal of Volcanology and Geothermal Research, 3, 1-37. https://doi.org/10.1016/0377-0273(78)90002-1
  27. Sparks, R.S.J., Bursik, M.I., Carey, S.N., Gilbert, J.G., Glaze, L.S., Sigurdsson, H. and Woods, A.W., 1997, Volcanic plumes. Wiley, Chichester, 574 p.
  28. Tatsumoto, M. and Nakamura, Y., 1991, DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geochim Cosmochim Acta, 55, 3697-3708. https://doi.org/10.1016/0016-7037(91)90068-G
  29. Walker, G.P.L., 1972, Crystal concentration in ignimbrites. Contributions to Mineralogy and Petrology, 36, 135-146. https://doi.org/10.1007/BF00371184
  30. Walker, G.P.L., 1973, Explosive volcanic eruptions - a new classification scheme. Geologische Rundschau, 62, 431-446. https://doi.org/10.1007/BF01840108
  31. Waters, A.C. and Fisher, R.V., 1971, Base surges and their deposits: Capelinhos and Taal volcanoes. Journal of Geophysaical Research, 76, 596-5614.
  32. Wilson, L., Sparks, R.S.J. and Walker, G.P.L., 1980, Explosive volcanic eruptions, IV, the control of magma properties and conduit geometry on eruption column behaviour. Geophysical Journal of Royal Astronomical Society, 63, 117-148. https://doi.org/10.1111/j.1365-246X.1980.tb02613.x
  33. Wohletz, K.H., 1983, Mechanism of hydrovolcanic pyroclasts formation: grain-size, scanning electron microscopy, and experimental studies. In: M. Sheridan and F. Barberi (Editors), Explosive volcanism. Journal of Volcanology and Geothermal Research, 17, 31-63. https://doi.org/10.1016/0377-0273(83)90061-6
  34. Wohletz, K.H., 1986, Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bulletin of Volcanology, 48, 245-264. https://doi.org/10.1007/BF01081754
  35. Wohletz, K.H. and Heiken, G.H., 1992, Volcanology and geothermal energy. University of California Press, Berkeley, 432 p.

Cited by

  1. Eruption types and vesicularities from pumice clasts of Member N-5 in the Maljandeung tuff, Ulleung Island, Korea. vol.55, pp.4, 2019, https://doi.org/10.14770/jgsk.2019.55.4.431
  2. Relationship between vesicularities of pumice clasts and eruption types in the Maljandeung Tuff, Ulleung Island, Korea vol.56, pp.4, 2018, https://doi.org/10.14770/jgsk.2020.56.4.453
  3. The latest volcanism in Nari Caldera, Ulleung Island: Transition from explosive to effusive eruption vol.56, pp.5, 2018, https://doi.org/10.14770/jgsk.2020.56.5.539
  4. 울릉도에서의 화산과정과 발생 가능한 분출유형의 평가 vol.53, pp.6, 2018, https://doi.org/10.9719/eeg.2020.53.6.715
  5. Interpreting the geometry and multistage evolution of the Nari Caldera, Ulleung Island, Korea vol.56, pp.6, 2018, https://doi.org/10.14770/jgsk.2020.56.6.737
  6. 40Ar/39Ar dating and inferences about plumbing system in Nari Caldera, Ulleung Island, Korea vol.57, pp.5, 2021, https://doi.org/10.14770/jgsk.2021.57.5.679