DOI QR코드

DOI QR Code

MINIMAL AND HARMONIC REEB VECTOR FIELDS ON TRANS-SASAKIAN 3-MANIFOLDS

  • Wang, Yaning (Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control School of Mathematics and Information Sciences Henan Normal University)
  • Received : 2017.10.31
  • Accepted : 2018.02.21
  • Published : 2018.11.01

Abstract

In this paper, we obtain some necessary and sufficient conditions for the Reeb vector field of a trans-Sasakian 3-manifold to be minimal or harmonic. We construct some examples to illustrate main results. As applications of the above results, we obtain some new characteristic conditions under which a compact trans-Sasakian 3-manifold is homothetic to either a Sasakian or cosymplectic 3-manifold.

Keywords

References

  1. N. Aktan, M. Yildirim, and C. Murathan, Almost f-cosymplectic manifolds, Mediterr. J. Math. 11 (2014), no. 2, 775-787. https://doi.org/10.1007/s00009-013-0329-2
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  3. D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199-207.
  4. X. Chen, Notes on Ricci solitons in f-cosymplectic manifolds, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 3, 242-253.
  5. D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36. https://doi.org/10.1007/BF01766972
  6. U. C. De and K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 27 (2012), no. 4, 795-808. https://doi.org/10.4134/CKMS.2012.27.4.795
  7. K. De and U. C. De, Projective curvature tensorin 3-dimensional connected trans-Sasakian manifolds, Acta Univ. Palackianae Olomucensis, Facultas Rerum Naturalium, Math. 55 (2016), 29-40.
  8. U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265-277.
  9. U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247-255.
  10. D. Debnath and A. Bhattacharyya, On generalized $\varphi$-recurrent trans-Sasakian manifolds, Acta Univ. Apulensis Math. Inform. No. 36 (2013), 253-265.
  11. S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2951-2958.
  12. S. Deshmukh, Geometry of 3-dimensional trans-Sasakaian manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62 (2016), no. 1, 183-192.
  13. S. Deshmukh and F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 4, 2099-2104.
  14. S. Deshmukh, U. C. De, and F. Al-Solamy, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Publ. Math. Debrecen 88 (2016), no. 3-4, 439-448. https://doi.org/10.5486/PMD.2016.7398
  15. S. Deshmukh and M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca 63 (2013), no. 6, 1361-1370. https://doi.org/10.2478/s12175-013-0176-4
  16. O. Gil-Medrano, Relationship between volume and energy of vector fields, Differential Geom. Appl. 15 (2001), no. 2, 137-152.
  17. O. Gil-Medrano and E. Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. (2) 54 (2002), no. 1, 71-84. https://doi.org/10.2748/tmj/1113247180
  18. J. C. Gonzalez-Davila and L. Vanhecke, Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), no. 3-4, 385-404. https://doi.org/10.1023/A:1006788819180
  19. J. C. Gonzalez-Davila and L. Vanhecke, Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom. 72 (2001), no. 1-2, 65-76. https://doi.org/10.1007/s00022-001-8570-4
  20. A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
  21. J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
  22. Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. https://doi.org/10.4064/ap-47-1-41-50
  23. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
  24. Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323.
  25. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
  26. D. Perrone, Almost contact metric manifolds whose Reeb vector field is a harmonic section, Acta Math. Hungar. 138 (2013), no. 1-2, 102-126.
  27. D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), no. 2, 258-274. https://doi.org/10.2996/kmj/1372337517
  28. M. D. Siddiqi, A. Haseeb, and M. Ahmad, On generalized Ricci-recurrent (${\epsilon},\;{\delta}$)-trans-Sasakian manifolds, Palest. J. Math. 4 (2015), no. 1, 156-163.
  29. L. Vanhecke and D. Janssens, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
  30. Y. Wang, Minimal Reeb vector fields on almost Kenmotsu manifolds, Czechoslovak Math. J. 67(142) (2017), no. 1, 73-86.
  31. G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), no. 2, 325-344.
  32. C. M. Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997), no. 3, 319-330. https://doi.org/10.1023/A:1017976425512
  33. A. Yildiz, U. C. De, and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684-693. https://doi.org/10.1007/s11253-013-0806-6