DOI QR코드

DOI QR Code

Design of Safety Management System for IoT based in SIP

SIP기반 임베디드 IoT 안전관리 시스템 설계

  • Kim, Sam-Taek (School of Information Technology Convergence, Woosong University)
  • Received : 2018.08.10
  • Accepted : 2018.10.20
  • Published : 2018.10.28

Abstract

IP and SIP public broadcasting systems developed in Korea and abroad are developed in a Windows or Linux server environments and are installed in a server-rack structure, have high power consumption, and are difficult to remotely respond to system failures. In this paper, IoT platform is designed to connect IoT device and gateway to IoT service server by using internet service structure. We also designed a server based on embedded OS that can provide a variety of public safety management services according to the order of the server with built-in call processing and broadcasting function that can handle emergency calls and emergency broadcasts in public places using this structure. This server is interoperable with a variety of SIP-based call and broadcast devices that support the standard SIP and can be integrated with an in-house phone and on-premises system.

국내, 외에서 개발된 IP, SIP 전관방송 시스템들은 윈도우나 리눅스 서버 환경에서 개발되어 서버-랙에 장착되어 운용되는 구조이며, 소비전력이 많고, 시스템 장애 시 원격 대응에 어려움이 있다. 따라서 본 논문에서는 전광방송을 위해 사물인터넷 서비스 구조를 이용하여 IoT 디바이스와 IoT 게이트웨이를 IoT 서비스 서버에 연결하는 IoT 플랫폼을 구성하고, 이 구조를 이용하여 호 처리 및 방송 기능을 내장하며 공공장소의 비상통화 및 비상방송을 처리할 수 있는 임베디드 OS 기반의 안전관리 시스템 서버를 설계 했다. 본 서버는 표준 SIP를 지원하는 다양한 SIP기반 통화 및 방송장치와 상호호환되어 구내전화 및 구내방송시스템과 통합구축이 가능하다.

Keywords

References

  1. D.Happ, N. Karowski, T.Menzel, V. Handzski and A. Wolisz, Meeting IoT platform requirements with open pub/sub solutions, Annals of Telecommunications. Internet]. lable : http://www.tkn.tu-berlin.de/fileadmin/ fg112/Papers/2016/Happ16meeting_iot_platform.pdf
  2. Iain E. G. Richardson (2003). H. 264 and MPEG-4 Video Compression.
  3. (2003). Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC.
  4. N. Sinha, K. E. Pujitha, and J. S. R. Alex. (2015). Xively Based Sensing and Monitoring System for IoT, Conf. International Conference on Computational Collective Intelligence Technologies and Application, Tamilnadu, India, 1-6.
  5. A. Niemi, Ed., (2004). Session Initiation Protocol (SIP) Extension for Event State Publication, RFC 3903.
  6. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. (2002). Handley and E. Schooler, Session Initiation Protocol, RFC 3261.
  7. R. Sparks. (2003). The Session Initiation Protocol (SIP) refer method, IETF RFC 3515.
  8. (2002). SIP RFC 3251, SIP: Session Initiation Protocol.
  9. A. Houri, E. Aoki, (2008). Presence & Instant Messaging Peering Use Cases. RFC 5344.
  10. M. Lonnfors, E. Leppanen, H. Khartabil, J. Urpalainen, (2011). SIP Extension for Partial Notification of Presence Information, Internet-Draft.
  11. H. Schulzrinne, (1996). RTP Profile for Audio and Video Conferences with Minimal Control, RFC 1890.
  12. H. Schulzrinne. (1996). RTP : A Transport Protocol for Realtime Application. RFC 1889.
  13. I. B. Busse, B. Deffner, H. schulzrinne, (1995). Dynamic QoS Control of Multimedia Applications based on RTP, R2116 TOMQAT.
  14. Haipeng Jin, Raymond Hill, Jun Wang. (2004). Performance comprasion of Header Compression schemes for RTP/UDP/IP Pckets, WCNC2004/IEEE Communications Society, 1691.
  15. Seung-Sun Yoo, Sam-Taek Kim.(2017). Development of Intelligent Gateway for IoT office service in small size. Journal of the Korea Convergence Society, 8(11), 37-42. https://doi.org/10.15207/JKCS.2017.8.11.037