DOI QR코드

DOI QR Code

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications) ;
  • Chen, Jun (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications) ;
  • Han, Xiao (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications) ;
  • Li, Yinghui (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications) ;
  • Zhang, Ziqiang (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications) ;
  • Ma, Yanwen (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications)
  • Received : 2018.08.08
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

Keywords

Acknowledgement

Supported by : NSFC, Jiangsu Provincial NSF, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)

References

  1. K. Cherenack and L. van Pieterson, J. Appl. Phys. 112, 091301 (2012). https://doi.org/10.1063/1.4742728
  2. Wei Zeng, L. Shu, Q. Li, S. Chen, F. Wang and X.-M. Tao, Adv. Mater. 26, 5310 (2014). https://doi.org/10.1002/adma.201400633
  3. M. Stoppa and A. Chiolerio, Sensors 14, 11957 (2014). https://doi.org/10.3390/s140711957
  4. D. Zoun, Z. Lv, X. Cai and S. Hou, Nano Energy 1, 273 (2012). https://doi.org/10.1016/j.nanoen.2012.01.005
  5. L. Yu, J. C. Yeo, R. H. Soon, T. Yeo, H. H. Lee and C. T. Lim, ACS Appl. Mater. Inter. 10, 12773 (2018). https://doi.org/10.1021/acsami.7b19823
  6. N. Coppede, G. Tarabella, M. Villani, D. Calestani, S. Iannotta and A. Zappettini, J. Mater. Chem. B 2, 5620 (2014).
  7. B. O'Connor, K. An, Y. Zhao, K. Pipe and M. Shtein, Adv. Mater. 19, 3897 (2007). https://doi.org/10.1002/adma.200700627
  8. G. Mattana, P. Cosseddu, B. Fraboni, G. G. Malliaras, J. P. Hinestroza and A. Bonglio, Org. Electron. 12, 2033 (2011). https://doi.org/10.1016/j.orgel.2011.09.001
  9. Y. H. Lee, J. S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T.-S. Kim, J.-Y. Lee and J. W. Choi, Nano Lett. 13, 5753 (2013). https://doi.org/10.1021/nl403860k
  10. T. Chen, R. Hao, H. Peng and L. Dai, Angew. Chem. Int. Ed. 54, 618 (2015).
  11. R. Ma, J. Lee, D. Choi, H. Moon and S. Baik, Nano Lett. 14, 1944 (2014). https://doi.org/10.1021/nl404801t
  12. A. Chhetry, H. Yoon and J. Y. Park, J. Mater. Chem. C 5, 10068 (2017). https://doi.org/10.1039/C7TC02926H
  13. T. L. Yang, C. T. Pan, Y. C. Chen, L. W. Lin, I. C. Wu, K. H. Hung, Y. R. Lin, H. L. Huang, C. F. Liu, S. W. Mao and S. W. Kuo, Opt. Mate. 39, 118 (2015). https://doi.org/10.1016/j.optmat.2014.11.009
  14. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim and T. Lee, Adv. Funct. Mater. 25, 3114 (2015). https://doi.org/10.1002/adfm.201500628
  15. Y. Lu, J. Jiang, S. Yoon, K.-S. Kim, J.-H. Kim, S. Park, S.-H. Kim and L. Piao, ACS Appl. Mater. Inter. 10, 2093 (2018). https://doi.org/10.1021/acsami.7b16022
  16. Y. Cheng, R. Wang, J. Sun and L. Gao, ACS Nano 9, 3887 (2015). https://doi.org/10.1021/nn5070937
  17. W. J. Ma, L. Q. Liu, R. Yang, T. H. Zhang, Z. Zhang, L. Song, Y. Ren, J. Shen, Z. Q. Niu, W. Y. Zhou and S. S. Xie, Adv. Mater. 21, 603 (2009). https://doi.org/10.1002/adma.200801335
  18. M. Naraghi, T. Filleter, A. Moravsky, M. Locascio, R. O. Loutfy and H. D. Espinosa, ACS Nano 4, 6463 (2010). https://doi.org/10.1021/nn101404u
  19. C. Xiang, W. Lu, Y. Zhu, Z. Sun, Z. Yan, C.-C. Hwang and J. M. Tour, ACS Appl. Mater. Inter. 4, 131 (2012). https://doi.org/10.1021/am201153b
  20. Y. Ma, P. Li, J. W. Sedloff, X. Zhang, H. Zhang and J. Liu, ACS Nano 9, 1352 (2015). https://doi.org/10.1021/nn505412v
  21. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet and J.-P. Simonato, Nanotechnology 24, 452001 (2013). https://doi.org/10.1088/0957-4484/24/45/452001
  22. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans and Y. Cui, ACS Nano 4, 2955 (2010). https://doi.org/10.1021/nn1005232
  23. Y.-T. Kwon, J.-W. Moon, Y.-M. Choi, S. Kim, S.-H. Ryu and Y.-H. Choa, J. Phys. Chem. C 121, 5740 (2017). https://doi.org/10.1021/acs.jpcc.7b00148
  24. H.-W. Tien, S.-T. Hsiao, W.-H. Liao, Y.-H. Yu, F.- C. Lin, Y.-S. Wang, S.-M. L and C.-C. M. Ma, Carbon 58, 198 (2013). https://doi.org/10.1016/j.carbon.2013.02.051
  25. W. S. Hummers and R. E. Offenman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  26. T. Akter and W. S. Kim, ACS Appl. Mater. Inter. 4, 1855 (2012). https://doi.org/10.1021/am300058j
  27. D. Pu, W. Zhou, Y. Li, J. Chen, J. Chen, H. Zhang, B. Mi, L. Wang and Y. Ma, RSC Adv. 5, 100725 (2015). https://doi.org/10.1039/C5RA20097K
  28. H.-W. Cui, K. Suganuma and H. Uchida, Nano Res. 8, 1604 (2015). https://doi.org/10.1007/s12274-014-0649-y
  29. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang and X.-M. Tao, Adv. Mater. 26, 5310 (2014). https://doi.org/10.1002/adma.201400633
  30. R. Liu, Y. Liu, J. Chen, Q. Kang, L. Wang, W. Zhou, Z. Huang, X. Lin, Y. Li, P. Li, X. Feng, G. Wu, Y. Ma and W. Huang, Nano Energy 33, 325 (2017). https://doi.org/10.1016/j.nanoen.2016.12.049