DOI QR코드

DOI QR Code

Effect of cohesive powders on pressure fluctuation characteristics of a binary gas-solid fluidized bed

  • Wei, Liping (School of Chemical Engineering, Northwest University) ;
  • Lu, Youjun (State Key Laboratory of Multiphase Flow in Power Engineering (SKLMFPE), Xi'an Jiaotong University) ;
  • Zhu, Jianbo (School of Chemical Engineering, Northwest University) ;
  • Jiang, Guodong (School of Chemical Engineering, Northwest University) ;
  • Hu, Jun (School of Chemical Engineering, Northwest University) ;
  • Teng, Haipeng (School of Chemical Engineering, Northwest University)
  • Received : 2018.01.22
  • Accepted : 2018.06.30
  • Published : 2018.10.01

Abstract

The effect of cohesive particles on the pressure fluctuations was experimentally investigated in a binary gas-solid fluidized bed. The pressure fluctuation signals were measured by differential pressure sensors under conditions of various weight percentages of cohesive particles. The cohesive particles increased the fixed bed pressure drop per unit height and decreased the minimum fluidization velocity. The Wen & Yu equation well predicts the minimum fluidization velocity of the binary system. The addition of cohesive particles slightly decreased the bubble size in bubbling flow regime when the cohesive particles and the coarse particles mixed well, while the bubble size greatly decreased when the cohesive particles agglomerated on the bed surface. The time series of pressure fluctuations was analyzed by using the methods of time domain, frequency domain and wavelet transformation. The normalized standard deviation of pressure fluctuations decreased with increasing weight percentages of cohesive particles. A wide bandwidth frequency of 0 to 1 Hz got narrower with a single peak around 0.6 Hz with an increase in proportion of the cohesive particles. The meso-energy and micro-energy of pressure fluctuations were decreasing with increasing cohesive particles proportions, which indicated that adding cohesive particles could reduce the energy dissipation of bubble and particle fluctuations.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, China Postdoctoral Science Foundation

References

  1. Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi and A.R. Mohamed, Renew. Sust. Energy Rev., 14, 2852 (2010).
  2. R. C. Borah, P. Ghosh and P. G. Rao, Int. J. Energy Res., 35, 929 (2011).
  3. J. Li, T. Nakazato and K. Kato, Chem. Eng. Sci., 59, 2777 (2004).
  4. Z. Yang, Y. Tung and M. Kwauk, Chem. Eng. Commun., 39, 217 (1985).
  5. H.O. Konon, C.C. Huang, E. Morimoto, T. Nakayama and T. Hikosaka, Powder Technol., 53, 163 (1987).
  6. T. Nakazato, Y. Suzuki, E.A. Mahmoud and N. Nakagawa, Effect of size and hold-up of cohesive fine powders on particulate fluidization of binary powder-particle mixtures, Asian Pac. Confederation Chem. Eng. Congress Progr. Abstracts (2004), DOI:10.11491/apcche. 2004.0.40.0.
  7. A. Scuzzarella, M. F. Bertos, S. J. Simons, C.D. Hills and P. J. Carey, Powder Technol., 163, 18 (2006).
  8. J. G. Yates and D. Newton, Chem. Eng. Sci., 41, 801 (1986).
  9. B. Han, Bubble dynamics and bed expansion for single-component and binary gas-solid fluidization systems, The University of Western Ontario (2017).
  10. Z. Zou, H. Z. Li and Q. S. Zhu, Powder Technol., 212, 258 (2011).
  11. H. Bi, J. Grace and J. Zhu, Powder Technol., 82, 239 (1995).
  12. H. Bi, Chem. Eng. Sci., 62, 3473 (2007).
  13. F. Johnsson, R. C. Zijerveld, J. C. Schouten, C. M. van den Bleek and B. Leckner, Int. J. Multiphase Flow, 26, 663 (2000).
  14. J. Gomez-Hernandez, D. Serrano, A. Soria-Verdugo and S. Sanchez-Delgado, Chem. Eng. J., 284, 640 (2016).
  15. J. van Ommen, S. Sasic, J. Van der Schaaf, S. Gheorghiu, F. Johnsson and M. Coppens, Int. J. Multiphase Flow, 37, 403 (2011).
  16. G. Tardos and R. Pfeffer, Powder Technol., 85, 29 (1995). https://doi.org/10.1016/0032-5910(95)03002-Q
  17. C. Briens, M. Hamidi, F. Berruti and J. Mcmillan, Powder Technol., 316, 92 (2017).
  18. J. Xiang, Q. Li, Z. Tan and Y. Zhang, Chem. Eng. Sci., 174, 93 (2017).
  19. C. E. Davies, A. Carroll and R. Flemmer. Powder Technol., 180, 307 (2008).
  20. J. Di, The wavelet analysis theory, Science Press, Beijing (2010).
  21. H. E. Hurst, Trans. Am. Soc. Civil Engineers, 116, 776 (1951).
  22. L. P. Wei and Y. J. Lu, Chem. Eng. Res. Design, 109, 657 (2016).
  23. Y. Lu, J. Huang and P. Zheng, Chem. Eng. J., 274, 123 (2015).
  24. C. Wen and Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser., 62, 100 (1966).
  25. K. Noda, S. Uchida, T. Makino and H. Kamo, Powder Technol., 46, 149 (1986).
  26. M. Puncochar and J. Drahos, Chem. Eng. Sci., 60, 1193 (2005).
  27. Y.O. Chong, D. P. O'Dea, E. T. White, P. L. Lee and L. S. Leung, Powder Technol., 53, 237 (1987).
  28. S.C. Hong, B.R. Jo, D. S. Doh and C. S. Choi, Powder Technol., 60, 215 (1990).
  29. A. Sheikhi, R. Sotudeh-Gharebagh, N. Mostoufi and R. Zarghami, Powder Technol., 235, 787 (2013). https://doi.org/10.1016/j.powtec.2012.11.026
  30. G. B. Zhao and Y.R. Yang, AIChE J., 49, 869 (2003).
  31. A. I. Karamavruc and N. N. Clark, Powder Technol., 90, 235 (1997).
  32. D. Bai, A. S. Issangya and J.R. Grace, Ind. Eng. Chem. Res., 38, 803 (1999).

Cited by

  1. Fluidization of fine powder assisted by vertical vibration in fluidized bed reactor vol.36, pp.9, 2018, https://doi.org/10.1007/s11814-019-0339-2
  2. Modeling and experiment of gas desorption of bubble column with an external loop in the heterogeneous flow regime vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0368-x
  3. Agglomeration of nickel oxide particle during hydrogen reduction at high temperature in a fluidized bed reactor vol.168, pp.None, 2018, https://doi.org/10.1016/j.cherd.2021.02.005