DOI QR코드

DOI QR Code

Application of fungal cultivation in biofiltration systems for hydrogen sulfide removal

황화수소 처리를 위한 바이오필터 기술의 곰팡이 적용 가능성

  • Lee, Junehyung (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Kim, Daekeun (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 이준형 (서울과학기술대학교 환경공학과) ;
  • 김대근 (서울과학기술대학교 환경공학과)
  • Received : 2018.07.27
  • Accepted : 2018.08.28
  • Published : 2018.09.30

Abstract

A lab-scale biofilter with fungal growth has been studied to investigate the removal of gas-phase hydrogen sulfide. The biofilter inoculated initially with the aerobic activated sludge was operated for 100 days under acidic condition, and 0.36 L/d of the buffered nutrient with 0.05 g/L Chloramphenicol and Gentamicin was injected into the biofilter. The critical removal capacity of hydrogen sulfide was up to $22g/m^3/h$. The pH of the effluent liquid was stable at pH 1.5-2, corresponding to the volatile suspended solids of 20-50 mg/L. In microbial analysis through the plate count method, it was found that fungi were dominant over bacteria. The fungi isolated from biomass in the bilfilter were identified as Acidomyces acidophilus and Aspergillus fumigatus. Sulfate and thiosulfate were also detected in liquid samples, as a result of the biological sulfur oxidation in the biofilter bed. For the analysis of sulfur mass balance, the accumulated mass of sulfate and thiosulfate reached up to 67.5% of inlet sulfur. Sulfur was also detected on the biomass collected from the biofilter through Scanning electron microscopy/Energy dispersive X-ray spectroscopy.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. Amich, J., Schafferer, L., Haas, H., Krappmann, S., 2013. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLOS Pathogens 9(8), e1003573. https://doi.org/10.1371/journal.ppat.1003573
  2. Arriaga, S., Revah, S., 2005. Improving hexane removal by enhancing fungal development in a microbial consortium biofilter. Biotechnology and bioengineering 90(1), 107-115. https://doi.org/10.1002/bit.20424
  3. Choi, Y., Lee, S., Kim, D., 2018. Determination of volatile organic compounds and sulfur-based odorous substances from sewage treatment plants. Korean Journal of Odor Research and Engineering 17(2), 161-167. (in Korean with English abstract).
  4. Cox, H. H., Deshusses, M. A., 2002. Co-treatment of $H_2S$ and toluene in a biotrickling filter. Chemical Engineering Journal 87(1), 101-110. https://doi.org/10.1016/S1385-8947(01)00222-4
  5. Dumont, E., Cabral, F. D. S., Le Cloirec, P., Andres, Y., 2013. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on $H_2S$ removal. Environmental technology 34(9), 1123-1129. https://doi.org/10.1080/09593330.2012.736691
  6. Fike, D. A., Bradley, A. S., Leavitt, W. D., 2016. Geomicrobiology of Sulfur. Taylor & Francis Group LLC.
  7. Galera, M. M., Cho, E., Kim, Y., Farnazo, D., Park, S. J., Oh, Y. S., Chung, W. J., 2008. Two-step pilot-scale biofilter system for the abatement of food waste composting emission. Journal of Environmental Science and Health Part A 43(4), 412-418. https://doi.org/10.1080/10934520701795632
  8. Gerrity, S., Kennelly, C., Clifford, E., Collins, G., 2016. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species. Environmental technology 37(17), 2252-2264.
  9. Iranmanesh, E., Halladj, R., Zamir, S. M., 2015. Microkinetic Analysis of nH exane Biodegradation by an Isolated Fungal Consortium from a Biofilter: Influence of Temperature and Toluene Presence. CLEAN Soil, Air, Water 43(1), 104-111.
  10. Jaber, M. B., Couvert, A., Amrane, A., Rouxel, F., Le Cloirec, P., Dumont, E., 2016. Biofiltration of high concentration of $H_2S$ in waste air under extreme acidic conditions. New biotechnology 33(1), 136-143. https://doi.org/10.1016/j.nbt.2015.09.008
  11. Jardetzky, O., 1963. Studies on the Mechanism of Action of Chloramphenicol I. The conformation of chloramphenicol in solution. Journal of Biological Chemistry 238(7), 2498-2508.
  12. Kennes, C., Veiga, M. C., 2004. Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology 113(1), 305-319. https://doi.org/10.1016/j.jbiotec.2004.04.037
  13. Kim, D., Sorial, G. A., 2007. Role of biological activity and biomass distribution in air biofilter performance. Chemosphere 66(9), 1758-1764. https://doi.org/10.1016/j.chemosphere.2006.06.069
  14. Kim, J. H., Rene, E. R., Park, H. S., 2008. Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresource Technology 99(3), 583-588. https://doi.org/10.1016/j.biortech.2006.12.028
  15. Lee, E. H., Cho, K. S., 2008. Degradation of malodorous pyridine in a polyurethane biofilter and isolation of pyridinedegrading bacteria. Korean Journal of Odor Research and Engineering 7(2), 81-88. (in Korean with English abstract).
  16. Lee, J. T. Y., Chow, K. L., 2012. SEM sample preparation for cells on 3D scaffolds by freezedrying and HMDS. Scanning 34(1), 12-25. https://doi.org/10.1002/sca.20271
  17. Liang, J., Chiaw, L. K. C., Ning, X., 2007. Application of biological activated carbon as a low pH biofilter medium for gas mixture treatment. Biotechnology and Bioengineering 96(6), 1092-1100. https://doi.org/10.1002/bit.21203
  18. Liu, C., Liu, J., Li, J., He, H., Peng, S., Li, C., Chen, Y., 2013, Removal of $H_2S$ by co-immobilized bacteria and fungi biocatalysts in a bio-trickling filter. Process Safety and Environmental Protection 91(1), 145-152. https://doi.org/10.1016/j.psep.2012.03.002
  19. Mehdinia, S. M., Latif, P. A., Taghipour, H., 2013. Removal of Hydrogen Sulfide by Physico-Biological Filter Using Mixed Rice Husk Silica and Dried Activated Sludge. CLEAN-Soil, Air, Water 41(10), 949-954.
  20. Mohammad, B. T., Rene, E. R., Veiga, M. C., Kennes, C., 2017. Performance of a thermophilic gas-phase biofilter treating high BTEX loads under steady-and transient-state operation. International Biodeterioration & Biodegradation 119, 289-298.
  21. Morgan-Sagastume, J. M., Noyola, A., 2006. Hydrogen sulfide removal by compost biofiltration: effect of mixing the filter media on operational factors. Bioresource Technology 97(13), 1546-1553. https://doi.org/10.1016/j.biortech.2005.06.003
  22. Patnaik, P., 2007. A comprehensive guide to the hazardous properties of chemical substances. John Wiley & Sons, 407.
  23. Phae, C. G., Shoda, M., 1991. A new fungus which degrades hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide. Biotechnology letters 13(5), 375-380. https://doi.org/10.1007/BF01027686
  24. Pikaar, I., Sharma, K. R., Hu, S., Gernjak, W., Keller, J., Yuan, Z., 2014. Reducing sewer corrosion through integrated urban water management. Science 345(6198), 812-814. https://doi.org/10.1126/science.1251418
  25. Popoola, L. T., Grema, A. S., Latinwo, G. K., Gutti, B., Balogun, A. S., 2013. Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry 4(1), 35.
  26. Prado, O. J., Veiga, M. C., Kennes, C., 2005. Treatment of gas-phase methanol in conventional biofilters packed with lava rock. Water Research 39(11), 2385-2393. https://doi.org/10.1016/j.watres.2005.04.021
  27. Ramirez, M., Gomez, J. M., Aroca, G., Cantero, D., 2009. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresource Technology 100(21), 4989-4995. https://doi.org/10.1016/j.biortech.2009.05.022
  28. Saito, K., 2000. Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Current Opinion in Plant Biology 3(3), 188-195. https://doi.org/10.1016/S1369-5266(00)80064-3
  29. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., and Fungal Barcoding Consortium, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109(16), 6241-6246.
  30. Selbmann, L., Egidi, E., Isola, D., Onofri, S., Zucconi, L., de Hoog, G. S., Chinaglia, S., Testa, L., Tosi, S., Balestrazzi, A., Lantieri, A., Compagno, R., Tigini, V., Varese, G. C., 2013. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 147(1), 237-246.
  31. Shareefdeen Z., Singh A., 2005. Biotechnology for odor and air pollution control, Springer-Verlag, Berlin, Heidelberg, 30-31.
  32. Simon, F.W., 2000. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmospheric Environment. 34(5), 761-779. https://doi.org/10.1016/S1352-2310(99)00342-8
  33. Solcia, R. B., Ramirez, M., Fernandez, M., Cantero, D., Bevilaqua, D., 2014. Hydrogen sulphide removal from air by biotrickling filter using open-pore polyurethane foam as a carrier. Biochemical engineering journal 84, 1-8.
  34. Syed, M., Soreanu, G., Falletta, P., Beland, M., 2006. Removal of hydrogen sulfide from gas streams using biological technology: a review. Canadian Biosystems Engineering 48, 2.
  35. Takano, B., Koshida, M., Fujiwara, Y., Sugimori, K., Takayanagi, S., 1997. Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry 38(3), 227-253. https://doi.org/10.1023/A:1005805100834
  36. Van Groenestijn, J. W., Van Heiningen, W. N., Kraakman, N. J., 2001. Biofilters based on the action of fungi. Water Science and Technology 44(9), 227-232.
  37. Vergara-Fernandez, A., Scott, F., Moreno-Casas, P., Diaz-Robles, L., Munoz, R., 2016. Elucidating the key role of the fungal mycelium on the biodegradation of n-pentane as a model hydrophobic VOC. Chemosphere 157, 89-96.
  38. Wani, A. H., Branion, R. M., Lau, A. K., 1998. Effects of periods of starvation and fluctuating hydrogen sulfide concentration on biofilter dynamics and performance. Journal of Hazardous Materials 60(3), 287-303. https://doi.org/10.1016/S0304-3894(98)00154-X
  39. Woertz, J. R., Kinney, K. A., Szaniszlo, P. J., 2001. A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas streams. Journal of the Air & Waste Management Association 51(6), 895-902.
  40. Yang, Y., Allen, E. R., 1994. Biofiltration control of hydrogen sulfide: 2. kinetics, biofilter performance, and maintenance. Journal of the Air & Waste Management Association 44(11), 1315-1321.
  41. Yoon, Y., Shin, J., Kim, D., 2016. Removal characteristics and mass balance analysis of ammonia in trickle bed air biofilter packed with polyurethane foam. Korean Journal of Odor Research and Engineering 15(1), 53-59. (in Korean with English abstract)