DOI QR코드

DOI QR Code

SOME RESULTS OF THE CARATHÉODORY'S INEQUALITY AT THE BOUNDARY

  • Received : 2017.09.06
  • Accepted : 2018.02.01
  • Published : 2018.10.31

Abstract

In this paper, a boundary version of the $Carath{\acute{e}}odory^{\prime}s$ inequality is investigated. We shall give an estimate below ${\mid}f^{\prime}(b){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these estimates is also proved.

Keywords

References

  1. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
  2. H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910x521643
  3. D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
  4. D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
  5. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  6. V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. (N.Y.) 207 (2015), no. 6, 825-831. https://doi.org/10.1007/s10958-015-2406-5
  7. M. Elin, F. Jacobzon, M. Levenshtein, and D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in Harmonic and complex analysis and its applications, 135-230, Trends Math, Birkhauser/Springer, Cham, 2014.
  8. G. M. Goluzin, Geometrical Theory of Functions of a Complex Variable, (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
  9. M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284.
  10. M. Jeong, The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.
  11. S. G. Krantz, The Schwarz lemma at the boundary, Complex Var. Elliptic Equ. 56 (2011), no. 5, 455-468. https://doi.org/10.1080/17476931003728438
  12. A. Lecko and B. Uzar, A note on Julia-Caratheodory theorem for functions with fixed initial coefficients, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 10, 133-137. https://doi.org/10.3792/pjaa.89.133
  13. M. Mateljevic, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
  14. M. Mateljevic, Schwarz lemma, the Caratheodory and Kobayashi metrics and applications in complex analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor (2016), 1-12.
  15. M. Mateljevic, Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
  16. M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma, (in preparation), ResearchGate.
  17. B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  18. B. N. Ornek, Caratheodory's inequality on the boundary, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 22 (2015), no. 2, 169-178.
  19. B. N. Ornek, A sharp Caratheodory's inequality on the boundary, Commun. Korean Math. Soc. 31 (2016), no. 3, 533-547. https://doi.org/10.4134/CKMS.c150194
  20. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  21. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.
  22. X. Tang, T. Liu, and J. Lu, Schwarz lemma at the boundary of the unit polydisk in $C^n$, Sci. China Math. 58 (2015), no. 8, 1639-1652. https://doi.org/10.1007/s11425-015-4975-7