DOI QR코드

DOI QR Code

Structural behaviour of stainless steel stub column under axial compression: a FE study

  • Khate, Kevinguto (Department of Civil Engineering, National Institute of Technology Meghalaya) ;
  • Patton, M. Longshithung (Department of Civil Engineering, National Institute of Technology Meghalaya) ;
  • Marthong, Comingstarful (Department of Civil Engineering, National Institute of Technology Meghalaya)
  • Received : 2017.12.08
  • Accepted : 2018.05.01
  • Published : 2018.12.31

Abstract

This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006) + A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It's been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006) + A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.

Keywords

References

  1. ABAQUS. (2013). "ABAQUS/Standard user's manual volumes I-III and ABAQUS CAE manual", Version 6.13, Dassault Systemes Corp., Providence, USA.
  2. Afshan, A., & Gardner, L. (2013). The continuous strength method for structural stainless steel design. Thin-Walled Structures, 68, 42-49. https://doi.org/10.1016/j.tws.2013.02.011
  3. American Society of Civil Engineers, SEI/ASCE8-02. (2002). Specifi cation for the design of cold-formed stainless steel structural members. Virginia: ASCE.
  4. Anbarasua, M., & Ashraf, M. (2016). Behaviour and design of coldformed lean duplex stainless steel lipped channel columns. Thin-Walled Structures, 104, 106-115. https://doi.org/10.1016/j.tws.2016.03.012
  5. Anbarasua, M., & Ashraf, M. (2017). Interaction of local-flexural buckling for cold-formed lean duplex stainless steel hollow columns. Thin-Walled Structures, 112, 20-30. https://doi.org/10.1016/j.tws.2016.12.006
  6. Chang, K. H., Lee, K. L., & Pan, W. F. (2010). Buckling failure of 310 stainless steel tubes with different diameter-to-thickness ratios under cyclic bending. Steel and Composite Structures, 10(3), 245-260. https://doi.org/10.12989/scs.2010.10.3.245
  7. Dai, X., & Lam, D. (2010). Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections. Steel and Composite Structures, 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517
  8. Ellobody, E., & Young, B. (2007). Investigation of cold-formed stainless steel non-slender circular hollow section columns. Steel and Composite Structures, 7(4), 321-337. https://doi.org/10.12989/scs.2007.7.4.321
  9. EN 10088-4 (2009). "Stainless steels-part 4: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes", CEN.
  10. EN1993-1-4.Eurocode3 (2006). "Design of Steel Structures - Part1-4: General Rules: Supplementary Rules for Stainless Steels", BSI, London
  11. Gardner, L. (2002). A new approach to structural stainless steel design", Ph.D.thesis. Struct. Section, Department of Civil and Environmental Engineering, Imperial College London, UK.
  12. Gardner, L. (2008). The continuous strength method. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 161(3), 127-133. https://doi.org/10.1680/stbu.2008.161.3.127
  13. Gardner, L., & Ashraf, M. (2006). Structural design for non-linear metallic materials. Engineering Structure, 28, 925-936.
  14. Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material propertiesof stainless steel alloys. Engineering Structure, 66(5), 634-647.
  15. Gardner, L., & Nethercot, D. A. (2004a). Experiments on stainless steel hollow-Part 1:material and cross-sectional behavior". Constr. Steel Res., 60(9), 1291-1318. https://doi.org/10.1016/j.jcsr.2003.11.006
  16. Gardner, L. and Nethercot, D.A. (2004). "Numerical modeling of stainless steel structural components-A consistent approach", Journal of Structural Engineering, ASCE, 130(10), 1586-1601. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1586)
  17. Gardner, L., Talja, A., & Baddoo, N. R. (2006). Structural design of high-strength austenitic stainless steel. Thin-Walled. Structures, 44, 517-528. https://doi.org/10.1016/j.tws.2006.04.014
  18. Hassanein, M. F. (2010). Numerical modeling of concrete-filled lean duplex slender stainless steel tubular stub columns. Journal of Constructional Steel Research, 66(8-9), 1057-1068. https://doi.org/10.1016/j.jcsr.2010.03.008
  19. Huang, Y., & Young, B. (2014). Structural performance of cold-formed lean duplex stainless steel columns. Thin-Walled Structures, 83, 59-69. https://doi.org/10.1016/j.tws.2014.01.006
  20. Kuwamura, H. (2003). Local buckling of thin-walled stainless steel members. Steel Structures, 3, 191-201.
  21. Liu, Y., & Young, B. (2003). Buckling of stainless steel square hollow section compression members. Journal of Constructional Steel Research, 59, 165-177. https://doi.org/10.1016/S0143-974X(02)00031-7
  22. Mirambell, E., & Real, E. (2000). On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. Journal of Constructional Steel Research, 54, 109-133. https://doi.org/10.1016/S0143-974X(99)00051-6
  23. Nilsson, J. O., Chai, G., & Kivisakk, U. (2008). Recent development of stainless steels (pp. 585-590). Helsinki, Finland: Pro. of the Sixth European Stainless steel Conf.
  24. Ramberg, W. and Osgood, W.R. (1943). "Description of stress-strain curves by three parameters", Technical Note No 902, Washington DC, National advisory committee for aeronautics
  25. Rasmussen, K. J. R., & Hancock, G. J. (1993). Design of cold-formed stainless steel tubular members I-columns. Journal of Structural Engineering, 119(8), 2349-2367. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:8(2349)
  26. Sachinanda, K., & Singh, K. D. (2015). Numerical study of fixed ended lean duplex stainless steel (LDSS) flat oval hollow stub column under pure axial compression. Thin-Walled Structures, 96, 105-119. https://doi.org/10.1016/j.tws.2015.07.016
  27. Sachinanda, K., & Singh, K. D. (2017). Structural behaviour of fixed ended stocky Lean Duplex Stainless Steel (LDSS) flat oval hollow column under axial compression. Thin-Walled Structures, 113, 47-60. https://doi.org/10.1016/j.tws.2017.01.012
  28. Salem, A. H., Sayed-Ahmed, E. Y., El-Serwi, A. A., & Korashy, M. M. (2004). Ultimate section capacity of steel thin-walled I-section beam-columns. Steel and Composite Structures, 4(5), 367-384. https://doi.org/10.12989/scs.2004.4.5.367
  29. Saliba, N., & Gardner, L. (2013). Cross-section stability of lean duplex stainless steel welded I-Sections. Journal of Constructional Steel Research, 80, 1-14. https://doi.org/10.1016/j.jcsr.2012.09.007
  30. Schafer, B. W. (2008). Review: the direct strength method of coldformed steel member design. Journal of Constructional Steel Research, 64(7-8), 766-778. https://doi.org/10.1016/j.jcsr.2008.01.022
  31. Sieurin, H., Sandstrom, R., & Westin, E. M. (2007). Fracture toughness of the lean duplex stainless steel LDX 2101. Metallurgical and Materials Transactions A, 37(10), 2975-2981.
  32. Theofanous, M., & Gardner, L. (2009). Testing and numerical modelling of lean duplex stainless steel hollow section columns. Engineering Structures, 31, 3047-3058. https://doi.org/10.1016/j.engstruct.2009.08.004
  33. Theofanous, M., & Gardner, L. (2011). Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections. Steel and Composite Structures, 12(1), 73-92.
  34. Uy, B. (2008). Stability and ductility of high performance steel sections with concrete infill. Journal of Constructional Steel Research, 64(7-8), 748-754. https://doi.org/10.1016/j.jcsr.2008.01.036
  35. Yang, L., Zhao, M., Chan, T. M., Shan, F., & Xu, D. (2016a). Flexural buckling of welded austenitic and duplex stainless steel I-section columns. Journal of Constructional Steel Research, 122, 339-353. https://doi.org/10.1016/j.jcsr.2016.04.007
  36. Yang, L., Zhao, M., Xu, D., Shang, F., Yuan, H., Wang, Y., et al. (2016b). Flexural buckling behaviour of welded stainless steel box-section columns. Thin-Walled Structures, 104, 185-197. https://doi.org/10.1016/j.tws.2016.03.014
  37. Young, B., & Liu, Y. (2002). Experimental investigation of coldformed stainless steel columns. Journal of Structural Engineering, 129(2), 169-176.
  38. Young, B., & Lui, W. M. (2006). Tests of cold-formed high strength stainless steel compression members. Thin-Walled Structures, 44(2), 224-234. https://doi.org/10.1016/j.tws.2006.01.006
  39. Yuan, H. X., Wang, Y. Q., Shi, Y. J., & Gardner, L. (2014). Stub column tests on stainless steel built-up sections. Thin-Walled Structures, 84, 103-114.

Cited by

  1. An Experimental Investigation on the Buckling Behaviors of Stainless Steel Square Hollow Section Compressive Members with Different Steel Grades vol.32, pp.5, 2020, https://doi.org/10.7781/kjoss.2020.32.5.309