DOI QR코드

DOI QR Code

Effect of Ion Exchange Capacity on Salt Removal Rate in Membrane Capacitive Deionization Process

이온교환용량이 막 결합형 축전식 탈염공정에서 염 제거율에 미치는 영향

  • Yun, Won Seob (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 윤원섭 (한남대학교 화공신소재공학과) ;
  • 정성일 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2018.10.18
  • Accepted : 2018.10.25
  • Published : 2018.10.31

Abstract

In order to investigate the effect of ion exchange capacity of ion exchange membranes on the salt removal efficiency in the membrane capacitive deionization process, sulfosuccinic acid (SSA) as the cross linking agent was added to poly(vinyl alcohol)(PVA) and sulfonic acid-co-maleic acid (PSSA_MA) was put into PVA at different concentrations of 10, 50 and 90 wt% relative to PVA. As the content of PSSA_MA increased, the water content and ion exchange capacity increased and the salt removal efficiency was also increased in the membrane capacitive deionization process. The highest salt removal efficiency was 65.5% at 100 mg/L NaCl feed at a flow rate, 15 mL/min and adsorption, 1.4 V/5 min for PSSA_MA 90 wt%.

막 결합형 축전식 탈염공정에서 이온교환막의 이온교환용량이 염 제거 효율에 미치는 영향을 알아보기 위해 poly(vinyl alcohol)(PVA) 수용성 고분자에 sulfosuccinic acid (SSA) 가교제를 첨가하고 poly(4-styrene sulfonic acid-co-maleic acid)(PSSA_MA)를 PVA 질량대비 10, 50, 90 wt%로 달리 첨가하여 제조하였다. PSSA_MA의 함량이 증가함에 따라 함수율과 이온교환용량이 증가하는 경향을 나타내었으며 막 결합형 축전식 탈염공정에서 염 제거 효율도 상승되었다. PSSA_MA 90 wt%, 100 mg/L NaCl의 공급액과 유속 15 mL/min에서 흡착 1.4 V/5분의 조건에서 가장 높은 65.5%의 염 제거 효율을 나타내었다.

Keywords

References

  1. A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Res., 131, 100 (2018). https://doi.org/10.1016/j.watres.2017.12.015
  2. B. M. Asquith, J. Meier-Haack, and B. P. Ladewig, "Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes", Chem. Eng. Res. Des., 104, 81 (2015). https://doi.org/10.1016/j.cherd.2015.07.020
  3. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015). https://doi.org/10.1039/C4RA14447C
  4. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  5. J. H. Ryu, T. J. Kim, T. Y. Lee, and I. B. Lee, "A study on modeling and simulation of capacitive deionization process for waste water treatment", J. Taiwan. Inst. Chem. E., 41, 506 (2010). https://doi.org/10.1016/j.jtice.2010.04.003
  6. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  7. J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  8. K. W. Kang and T. S. Hwang, "Synthesis and characteristics of partially fluorinated poly(vinylidene fluroide)(PVDF) cation exchange membrane via direct sulfonation", Membr. J., 25, 406 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.406
  9. M. A. Anderson, A. L. Cudero, and J. Palma, "Effective modified carbon nanofibers as electrodes for capacitive deionization process", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  10. S. Porada, L. Weinstein, R. Dash, A. Van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS Appl. Mater. Interfaces, 4, 1194 (2012). https://doi.org/10.1021/am201683j
  11. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  12. R. Zhao, P. M. Biesheuvel, and A. van der Wal, "Energy consumption and constant current operation in membrane capacitive deionization", Energy Environ. Sci., 5, 9520 (2010).
  13. C. Wang, H. Song, Q. Zhang, B. Wang, and A. Li, "Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407 (2015). https://doi.org/10.1016/j.desal.2015.03.025
  14. Y.-J. Kim, J. Hur, W. Bae, and J.-H. Choi, "Desalination of brackish water containing oil compound by capacitive deionization process", Desalination, 253, 119 (2010). https://doi.org/10.1016/j.desal.2009.11.022
  15. P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, "Theory of membrane capacitive deionization including the effect of the electrode pore space", J. Colloid Interface Sci., 350, 239 (2011).
  16. H. Strathmann, "Ion-exchange Membrane Separation Processes", Elsevier, Amsterdam (2004).
  17. D. H. Kim, J. S. Park, and M. S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  18. J. H. Yeo and J. H. Choi, "Enhancement of selective removal of nitrate ions from a mixture of anions using a carbon electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
  19. S. W. Chen, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly (vinyl alcohol) ion exchange membranes for direct methanol fuel cell", Membr. J., 13, 199 (2003).
  20. H. Strathmann, "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264, 268 (2010). https://doi.org/10.1016/j.desal.2010.04.069
  21. C. W. Lin, Y. F. Huang, and A. M. Kannan, "Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells", J. Power Sourecs, 171, 340 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.145
  22. Y. S. Jeon and J. W. Rhim, "Performance study on membrane capacitive deionization (MCDI) processes using the composite carbon electrodes coated by cation and anion exchange polymers based on PVA", Polym. Korea, 41, 352 (2017). https://doi.org/10.7317/pk.2017.41.2.352