DOI QR코드

DOI QR Code

Effects of adherence to Korean diets on serum GGT and cardiovascular disease risk factors in patients with hypertension and diabetes

고혈압 및 당뇨병 환자에서 한식 섭취가 혈청 GGT와 심혈관질환 위험인자에 미치는 영향

  • Jung, Su-Jin (Clinical Trial Center for Functional Foods, Chonbuk National University Hospital) ;
  • Chae, Soo-Wan (Clinical Trial Center for Functional Foods, Chonbuk National University Hospital)
  • 정수진 (전북대학교병원 기능성식품임상시험지원센터) ;
  • 채수완 (전북대학교병원 기능성식품임상시험지원센터)
  • Received : 2018.09.17
  • Accepted : 2018.10.14
  • Published : 2018.10.31

Abstract

Purpose: This study examined whether the supply of healthy Korean diets for 12 weeks is effective in improving the risk factors related to serum GGT and cardiovascular diseases in patients with hypertension and diabetes. Methods: This study selected 41 patients, who were treated with hypertension and diabetes. The Korean diet was composed of cooked-rice, soup, kimchi, and various banchan with one serving called bapsang, which emphasize proportionally high consumption of vegetables and fermented foods, moderate to high consumption of legumes and fish, and low consumption of animal foods. The control group was instead instructed to "eat and exercise as usual" while following the Korean Diabetes Association's dietary guidelines with an intake that can assist in glycemic control, maintain adequate weight, and meet the nutritional requirements. The Korean diet group (21 patients) were served three healthy Korean meals a day for 12 weeks, and the control group (20 patients, who trained in the diet guideline of diabetes) maintained their usual diabetic diet. The serum GGT, blood pressure, heart rate, glycemic control data, cardiovascular risk indicators, and changes in diet measured at the four visits (week 0, 4, 8, and 12) during the course of 12 weeks were compared and evaluated. Results: The serum GGT (p < 0.001), HbA1c (p = 0.004), heart rate (p = 0.007), weight (p = 0.002), Body Mass Index (p = 0.002), body fat mass (p < 0.001), body fat (%) (p < 0.001), and free fatty acid (p = 0.007) in the Korean diet group decreased significantly after the dietary intervention compared to the control group. The amount of intake of rice, whole grains, green vegetables, Kimchi, and soybean fermented food were increased significantly compared to the control group (p < 0.001). The Korean diet group showed significant decreases (p < 0.001) in the intake of animal protein, lipid, and cholesterol derived from animal foods compared to the control group but significant increases (p < 0.001) in the intake of total calories, folic acid, dietary fiber, sodium, potassium, and vitamins A, E, and C. Conclusion: In patients with hypertension and diabetes, it was confirmed that regular eating of a healthy Korean diet helps improve the risk factors for GGT and cardiovascular diseases.

본 연구는 고혈압 및 당뇨병 치료 중인 환자 41명을 대상으로 한식 섭취가 12주간의 경과 과정에서 4차례의 방문(0주, 4주, 8주, 12주)을 통해 측정한 혈청 GGT, 혈압 및 glycemic control data, 심혈관계 위험지표 및 식이섭취의 변화를 비교 평가한 결과는 다음과 같았다. 1. 연구대상자는 평균 연령은 $61.8{\pm}1.9$세로 한식군 (21명)의 경우 건강한 한식을 1일 3끼씩 12주간 제공된 식사를 섭취하였고, 대조군 (당뇨병 식이 가이드라인에 따른 관리교육을 받은 자) 20명은 평소 섭취하던 당뇨조절 식사를 그대로 유지하게 하였다. 2. 수축기혈압과 이완기혈압은 두군 간 유의한 차이를 확인할 수 없었으나 맥박수는 한식군에서 대조군에 비해 유의적으로 감소하였다 (p = 0.007). 3. 당화혈색소 (HbA1c)는 한식군에서 연구 참여 전과 후 각각 $6.8{\pm}.2%$, $6.1{\pm}.2%$로 감소하고 대조군은 각각 $6.8{\pm}.2%$, $6.5{\pm}.2%$로 감소되어 한식군이 대조군에 비해 유의적으로 감소폭이 컸다 (p = 0.004). 4. 혈청 GGT는 한식군에서 연구 참여 전과 후 각각 $28.8{\pm}4.5IU/L$, $19.8{\pm}3.2IU/L$로 감소하고 대조군은 각각 $30.0{\pm}4.1IU/L$, $33.9{\pm}5.0IU/L$로 증가되어 한식군이 대조군에 비해 유의적으로 감소하였다 (p < 0.001). 5. 총콜레스테롤, LDL 콜레스테롤 및 중성지방은 한식군에서 대조군에 비해 감소한 경향이었으나 두군 간 유의적인 차이가 없었으며 free fatty acid는 한식군에서 대조군 보다 유의적으로 감소하였다 (p = 0.002). 6. 신체계측 지표인 체중 (p = 0.002), 체질량지수 (p = 0.002), 체지방량 (p < 0.001), 체지방율 (p < 0.001)은 연구 참여 전에 비해 연구 참여 12주 후에 한식군에서 대조군에 비해 유의적으로 감소하였다. 7. 치료약물의 변화량은 두군 간 유의한 차이는 없었으나 한식군에서 대조군보다 많은 수의 환자가 실제로 고혈압, 당뇨병 및 고지혈증 치료 약물을 감량할 수 있었다. 8. 한식군은 연구 참여 동안에 전곡류의 밥, 채소류인 나물류, 김치 및 전통 콩발효식품 등의 섭취량은 대조군에 비해 유의하게 증가하였다 (p < 0.001). 9. 한식군은 동물성식품에서 유래한 동물성 단백질 (p < 0.001), 지질 (p < 0.001) 및 콜레스테롤 (p = 0.034)의 섭취량은 대조군에 비해 유의적으로 감소한 반면, 총칼로리(p < 0.001), 엽산 (p < 0.001), 식이섬유 (p < 0.001), 나트륨(p < 0.001), 칼륨 (p < 0.001), 비타민 A, C, E (p < 0.001) 및 비타민 B류 (p < 0.001)의 섭취는 유의적으로 증가하였다. 이상의 결과를 종합해 보면, 적극적인 전곡류로 만든 밥을 중심으로 한 한식 섭취는 당뇨병 및 고혈압 환자에서 대사성질환 및 심혈관계질환 위험인자인 혈청 GGT, 맥박수, 혈당조절 지표 및 비만지표 개선에 긍정적인 영향을 주었다.

Keywords

References

  1. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, Neumiller JJ, Nwankwo R, Verdi CL, Urbanski P, Yancy WS Jr; American Diabetes Association. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013; 36(11): 3821-3842. https://doi.org/10.2337/dc13-2042
  2. Yu SY, Hong HS, Lee HS, Choi YJ, Huh KB, Kim WY. The association of insulin resistance with cardiovascular disease risk and dietary factors in Korean type 2 DM patients. Korean J Nutr 2007; 40(1): 31-40.
  3. Perry IJ, Wannamethee SG, Shaper AG. Prospective study of serum gamma-glutamyltransferase and risk of NIDDM. Diabetes Care 1998; 21(5): 732-737. https://doi.org/10.2337/diacare.21.5.732
  4. Lee DH, Blomhoff R, Jacobs DR Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 2004; 38(6): 535-539. https://doi.org/10.1080/10715760410001694026
  5. Lee DH, Ha MH, Kim JR, Gross M, Jacobs DR Jr. Gamma-glutamyltransferase, alcohol, and blood pressure. A four year follow-up study. Ann Epidemiol 2002; 12(2): 90-96. https://doi.org/10.1016/S1047-2797(01)00252-6
  6. Turgut O, Yilmaz A, Yalta K, Karadas F, Birhan Yilmaz M. Gamma-glutamyltransferase is a promising biomarker for cardiovascular risk. Med Hypotheses 2006; 67(5): 1060-1064. https://doi.org/10.1016/j.mehy.2006.04.010
  7. Lee DH, Jacobs DR, Gross M. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin Chem 2003; 49: 1358-1366. https://doi.org/10.1373/49.8.1358
  8. Lim JS, Kim YJ, Chun BY, Yang JH, Lee DH, Kam S. The association between serum GGT level within normal range and risk factors of cardiovascular diseases. J Prev Med Public Health 2005; 38(1): 101-106.
  9. Kunutsor SK, Abbasi A, Adler AI. Gamma-glutamyl transferase and risk of type II diabetes: an updated systematic review and dose-response meta-analysis. Ann Epidemiol 2014; 24(11): 809-816. https://doi.org/10.1016/j.annepidem.2014.09.001
  10. Du G, Song Z, Zhang Q. Gamma-glutamyltransferase is associated with cardiovascular and all-cause mortality: a meta-analysis of prospective cohort studies. Prev Med 2013; 57(1): 31-37. https://doi.org/10.1016/j.ypmed.2013.03.011
  11. Kunutsor SK, Apekey TA, Cheung BM. Gamma-glutamyltransferase and risk of hypertension: a systematic review and doseresponse meta-analysis of prospective evidence. J Hypertens 2015; 33(12): 2373-2381. https://doi.org/10.1097/HJH.0000000000000763
  12. Alissa EM. Relationship between serum gamma-glutamyltransferase activity and cardiometabolic risk factors in metabolic syndrome. J Family Med Prim Care 2018; 7(2): 430-434. https://doi.org/10.4103/jfmpc.jfmpc_194_17
  13. Lee DH, Silventoinen K, Jacobs DR Jr, Jousilahti P, Tuomileto J. Gamma-glutamyltransferase, obesity, and the risk of type 2 diabetes: observational cohort study among 20,158 middle-aged men and women. J Clin Endocrinol Metab 2004; 89(11): 5410-5414. https://doi.org/10.1210/jc.2004-0505
  14. Lim JS, Lee DH, Park JY, Jin SH, Jacobs DR Jr. A strong interaction between serum gamma-glutamyltransferase and obesity on the risk of prevalent type 2 diabetes: results from the Third National Health and Nutrition Examination Survey. Clin Chem 2007; 53(6): 1092-1098. https://doi.org/10.1373/clinchem.2006.079814
  15. Lee DH, Steffen LM, Jacobs DR Jr. Association between serum gamma-glutamyltransferase and dietary factors: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 2004; 79(4): 600-605. https://doi.org/10.1093/ajcn/79.4.600
  16. Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L. Background exposure to persistent organic pollutants predicts stroke in the elderly. Environ Int 2012; 47: 115-120. https://doi.org/10.1016/j.envint.2012.06.009
  17. Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev 2014; 35(4): 557-601. https://doi.org/10.1210/er.2013-1084
  18. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA. Food web-specific biomagnification of persistent organic pollutants. Science 2007; 317(5835): 236-239. https://doi.org/10.1126/science.1138275
  19. Montonen J, Boeing H, Fritsche A, Schleicher E, Joost HG, Schulze MB, Steffen A, Pischon T. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr 2013; 52(1): 337-345. https://doi.org/10.1007/s00394-012-0340-6
  20. Kim SH, Kim MS, Lee MS, Park YS, Lee HJ, Kang S, Lee HS, Lee KE, Yang HJ, Kim MJ, Lee YE, Kwon DY. Korean diet: characteristics and historical background. J Ethn Foods 2016; 3(1): 26-31. https://doi.org/10.1016/j.jef.2016.03.002
  21. Lee KW, Cho MS. The development and validation of the Korean Dietary Pattern Score (KDPS). Korean J Food Cult 2010; 25(6): 652-660.
  22. Lee SK, Sobal J. Socio-economic, dietary, activity, nutrition and body weight transitions in South Korea. Public Health Nutr 2003; 6(7): 665-674. https://doi.org/10.1079/PHN2003485
  23. Kim S, Moon S, Popkin BM. The nutrition transition in South Korea. Am J Clin Nutr 2000; 71(1): 44-53. https://doi.org/10.1093/ajcn/71.1.44
  24. Ministry of Health and Welfare, The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Sejong; 2015.
  25. Lee MJ, Popkin BM, Kim S. The unique aspects of the nutrition transition in South Korea: the retention of healthful elements in their traditional diet. Public Health Nutr 2002; 5(1A): 197-203. https://doi.org/10.1079/PHN2001294
  26. Korean Diabetes Association. 2011 treatment guideline for diabetes. Seoul: Korean Diabetes Association; 2011.
  27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
  28. Lee YM, Kim SA, Lee IK, Kim JG, Park KG, Jeong JY, Jeon JH, Shin JY, Lee DH. Effect of a brown rice based vegan diet and conventional diabetic diet on glycemic control of patients with type 2 diabetes: a 12-week randomized clinical trial. PLoS One 2016; 11(6): e0155918. https://doi.org/10.1371/journal.pone.0155918
  29. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther 2014; 4(5): 373-382.
  30. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007; 4(8): e261. https://doi.org/10.1371/journal.pmed.0040261
  31. Jenkins DJ, Wolever TM, Taylor RH, Barker HM, Fielden H, Gassull MA. Lack of effect of refining on the glycemic response to cereals. Diabetes Care 1981; 4(5): 509-513. https://doi.org/10.2337/diacare.4.5.509
  32. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and metaanalysis. Arch Intern Med 2007; 167(9): 956-965. https://doi.org/10.1001/archinte.167.9.956
  33. McKeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am J Clin Nutr 2002; 76(2): 390-398. https://doi.org/10.1093/ajcn/76.2.390
  34. Sahyoun NR, Jacques PF, Zhang XL, Juan W, McKeown NM. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 2006; 83(1): 124-131. https://doi.org/10.1093/ajcn/83.1.124
  35. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and causespecific mortality: two cohort studies. Ann Intern Med 2010; 153(5): 289-298. https://doi.org/10.7326/0003-4819-153-5-201009070-00003
  36. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 2000; 342(19): 1392-1398. https://doi.org/10.1056/NEJM200005113421903
  37. Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA 2002; 288(20): 2569-2578. https://doi.org/10.1001/jama.288.20.2569
  38. Kwon JY, Chung HY. Study on the correlation between the nutrient intakes and clinical indices of Type 2 diabetes patients. Korean J Food Nutr 2013; 26(4): 909-918. https://doi.org/10.9799/ksfan.2013.26.4.909
  39. Thamer C, Tschritter O, Haap M, Shirkavand F, Machann J, Fritsche A, Schick F, Haring H, Stumvoll M. Elevated serum GGT concentrations predict reduced insulin sensitivity and increased intrahepatic lipids. Horm Metab Res 2005; 37(4): 246-251. https://doi.org/10.1055/s-2005-861411
  40. Nakajima T, Ohta S, Fujita H, Murayama N, Sato A. Carbohydrate-related regulation of the ethanol-induced increase in serum gamma-glutamyl transpeptidase activity in adult men. Am J Clin Nutr 1994; 60(1): 87-92. https://doi.org/10.1093/ajcn/60.1.87
  41. Lakka TA, Nyyssonen K, Salonen JT. Higher levels of conditioning leisure time physical activity are associated with reduced levels of stored iron in Finnish men. Am J Epidemiol 1994; 140(2): 148-160. https://doi.org/10.1093/oxfordjournals.aje.a117225
  42. Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997; 23(5): 783-792. https://doi.org/10.1016/S0891-5849(97)00016-6
  43. Cha YS, Yang JA, Back HI, Kim SR, Kim MG, Jung SJ, Song WO, Chae SW. Visceral fat and body weight are reduced in overweight adults by the supplementation of Doenjang, a fermented soybean paste. Nutr Res Pract 2012; 6(6): 520-526. https://doi.org/10.4162/nrp.2012.6.6.520
  44. Kim EK, An SY, Lee MS, Kim TH, Lee HK, Hwang WS, Choe SJ, Kim TY, Han SJ, Kim HJ, Kim DJ, Lee KW. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr Res 2011; 31(6): 436-443. https://doi.org/10.1016/j.nutres.2011.05.011
  45. Cha YS, Kim SR, Yang JA, Back HI, Kim MG, Jung SJ, Song WO, Chae SW. Kochujang, fermented soybean-based red pepper paste, decreases visceral fat and improves blood lipid profiles in overweight adults. Nutr Metab (Lond) 2013; 10(1): 24. https://doi.org/10.1186/1743-7075-10-24
  46. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61(2): 364-371. https://doi.org/10.2337/db11-1019
  47. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the shortchain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829. https://doi.org/10.1038/ncomms2852

Cited by

  1. 한식의 체내 대사에 미치는 영향에 대한 연구: 소변 유기산 분석을 통한 한식의 효과 vol.53, pp.3, 2018, https://doi.org/10.4163/jnh.2020.53.3.231
  2. Effects of a Rice-Based Diet in Korean Adolescents Who Habitually Skip Breakfast: A Randomized, Parallel Group Clinical Trial vol.13, pp.3, 2018, https://doi.org/10.3390/nu13030853