DOI QR코드

DOI QR Code

Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting

다양한 In 조성을 가진 InGaN/GaN Multi Quantum Well의 효과적인 광전기화학적 물분해

  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Bang, Seung Wan (School of Applied Chemical Engineering, Chonnam National University) ;
  • Ju, Jin-Woo (Photonic Device Research Center, Korea Photonics Technology Institute) ;
  • Ha, Jun-Seok (Optoelectronics Convergence Research Center, Chonnam National University)
  • 배효정 (전남대학교 광전자융합기술연구소) ;
  • 방승완 (전남대학교 화학공학부) ;
  • 주진우 (한국광기술원 광 ICT 에너지 연구센터) ;
  • 하준석 (전남대학교 광전자융합기술연구소)
  • Received : 2018.09.21
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

In this study, the effects of indium (In) doping in InGaN/GaN multi quantum well (MQW) on photoelectrochemical (PEC) properties were investigated. Each quantum well (QW) layer with controlled In content were grown on sapphire substrate. Before growth of MQW, GaN growth consisted of various stages in the following order: buffer GaN growth, undoped GaN growth, and Si-doped n-type GaN growth. Absorbance of InGaN/GaN MQW having different In composition was higher than that of the InGaN/GaN MQW having a constant In composition. It indicates that InGaN layer having different In composition absorbs light having a broad spectrum energy. These results are in agreement with those in photoluminescence (PL). After evaluation of PEC properties, it demonstrated that InGaN/GaN MQW having different In composition was improved InGaN/GaN MQW having constant In composition in PEC water splitting ability.

본 연구에서는 InGaN/GaN multi quantum well (MQW)에서 Indium (In) 도핑효과에 따른 광전기화학적 특성을 관찰하였다. 기판으로는 Sapphire을 사용하였고, 각 Quantum well (QW)을 구성하고 있는 InGaN의 조성을 다르게 하였다. 투과도 측정 결과 일정한 In 조성을 가진 InGaN/GaN MQW에 비해 각 QW의 In 조성을 다르게 한 InGaN/GaN MQW에서 흡수도가 향상되는 것을 확인할 수 있었다. 이는 각각 다른 In 조성을 가진 InGaN 층이 더 넓은 영역의 스펙트럼 에너지를 가지는 빛을 흡수하기 때문인 것으로 생각된다. 광학적 특성을 평가하기 위해 진행한 상온 photoluminescence (PL) 실험을 진행한 결과, 역시 다양한 In 조성을 가진 InGaN/GaN MQW이 더 넓은 파장에서 발광이 나타나는 것을 확인할 수 있었다. 이들 샘플에 대한 광전기화학적 특성평가를 통하여, gradation In 조성을 가지고 있는 InGaN/GaN MQW이 일정한 In 조성을 가지는 InGaN/GaN MQW에 비해 광전기화학적 물분해 능력이 월등히 향상됨을 확인하였다.

Keywords

References

  1. A. G. Tamirat, J. Rick, A. A. Dubale, W.-N. Su, and B.-J. Hwang, "Using hematite for photoelectrochemical water splitting: a review of current progress and challenges", Nanoscale Horiz, 2016(1), 243 (2016).
  2. J. H. Kim, H. Kaneko, T. Minegishi, J. Kubota, K. Domen, and J. S. Lee, "Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight", ChemSus-Chem, 9(1), 61 (2016).
  3. X. Shi, H. Jeong, S. J. Oh, M. Ma, K. Zhang, J. Kwon, I. T. Choi, I. Y. Choi, H. K. Kim, J. K. Kim, and J. H. Park, "Unassisted photoelectrochemical water splitting exceeding 7% solarto-hydrogen conversion efficiency using photon recycling", Nat. Commun., 7, 11943 (2016).
  4. D.W. Hwang, J. Kim, T. J. Park, and J. S. Lee, "Mg-Doped $WO_3$ as a Novel Photocatalyst for Visible Light-Induced Water Splitting", Catal. Lett., 80(1), 53 (2002). https://doi.org/10.1023/A:1015322625989
  5. M. A. Gondal, A. Hameed, Z. H. Yamani, and A. Suwaiyan, "Laser induced photo-catalytic oxidation/splitting of water over $\alpha$-$Fe_2O_3$, $WO_3$, $TiO_2$ and NiO catalysts: activity comparison" Chem. Phys. Lett., 385(1), 111 (2004). https://doi.org/10.1016/j.cplett.2003.12.066
  6. S. U. M. Khan, and J. Akikusa, "Photoelectrochemical Splitting of Water at Nanocrystalline n-$Fe_2O_3$ Thin-Film Electrodes", J. Phys. Chem. B, 103(34), 7184 (1999). https://doi.org/10.1021/jp990066k
  7. S. W. Bang, H. Kim, H. Bae, J.-W. Ju, S.-J. Kang, and J.-S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN", J. Microelectron. Packag. Soc., 24(4), 59 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.059
  8. J. A. Turner, "A Realizable Renewable Energy Future", Science, 285(5428), 687 (1999). https://doi.org/10.1126/science.285.5428.687
  9. M. Gratzel, "Photoelectrochemical cells", Nature, 414, 338 (2001).
  10. I. M. Huygens, K. Strubbe, and W. P. Gomes, "Electrochemistry and Photoetching of n-GaN", J. Electrochem. Soc., 147(5), 1797 (2000). https://doi.org/10.1149/1.1393436
  11. S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, "Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface", J. Electrochem. Soc., 142(12), L238 (1995). https://doi.org/10.1149/1.2048511
  12. K. Fujii, and K. Ohkawa, "Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis", Phys. Stat. Sol. C, 3(6), 2270 (2006).
  13. K. Sato, K. Fujii, K. Koike, T. Goto, and T. Yao, "Anomalous time variation of photocurrent in GaN during photoelectrochemical reaction for $H_2$ gas generation in NaOH aqueous solution", Phys. Stat. Sol. C, 6(52), S635 (2009).
  14. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M.G. Kibria, S. Fan, and Z. Mi, "Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode", Nano Letters, 13(9), 4356 (2013). https://doi.org/10.1021/nl402156e
  15. L. Caccamo, J. Hartmann, C. Fabrega, S. Estrade, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiro, J. M. Rebled, H.-Heinrich Wehmann, W. Daum, H. Shen, and A. Waag, "Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting", ACS Appl. Mater. Interfaces., 6(4), 2235 (2014).
  16. J. Li, J. Y. Lin, and H. X. Jiang, "Direct hydrogen gas generation by using InGaN epilayers as working electrodes", Appl. Phys. Lett., 93(16), 162107 (2008). https://doi.org/10.1063/1.3006332
  17. I. Ho, and G. B. string fellow, "Solid phase immiscibility in GaInN", Appl. Phys. Lett., 69(18), 2701 (1996). https://doi.org/10.1063/1.117683
  18. J. Dalfors, J. P. Bergman, P. O. Holtz, B. E. Sernelius, B. Monemar, H. Amano, and I. Akasaki, "Optical properties of doped InGaN/GaN multiquantum-well structures", Appl. Phys. Lett., 74(22), 3299 (1999). https://doi.org/10.1063/1.123324
  19. H. Bae, J.-B. Park, K. Fujii, H.-J. Lee, S.-H. Lee, S.-W. Ryu, J. K. Lee, and J.-S. Ha, "The Effect of the number of InGaN/GaN pairs on the photoelectrochemical properties of InGaN/GaN multi quantum wells", Appl. Sur. Sci., 401(15), 348 (2016).
  20. H. Kim, H. Bae, S.-J. Kang, and J.-S. Ha, "$MnO_2$ co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). https://doi.org/10.6117/KMEPS.2016.23.4.113