DOI QR코드

DOI QR Code

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Received : 2018.01.24
  • Accepted : 2018.10.23
  • Published : 2018.11.10

Abstract

Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Keywords

References

  1. Bergfelt, A. (1979), Patch Loading on a Slender Web: Influence of Horizontal and Vertical Web Stiffeners on the Load Carrying Capacity, Chalmers Technology University,.
  2. Bergfelt, A. (1983), Girder web stiffening for patch loading, Chalmers Technology University, Goteborg, Switzerland.
  3. Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992), "A training algorithm for optimal margin classifiers", Proceedings of the Fifth Annual Workshop on Computational Learning Theory.
  4. Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, Int. J., 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233
  5. Cao, Y.F., Wu, W., Zhang, H.L. and Pan, J.M. (2013), "Prediction of the elastic modulus of self-compacting concrete based on SVM", Appl. Mech. Mater., 357, 1023-1026.
  6. Carretero, A. and Lebet, J. (1998), "Introduction des forces concentrees dans les poutres elancees", Constr. metallique, 1.
  7. Cevik, A. (2007), "A new formulation for longitudinally stiffened webs subjected to patch loading", J. Constr. Steel Res., 63(10), 1328-1340. https://doi.org/10.1016/j.jcsr.2006.12.004
  8. Cevik, A., Gogus, M.T., Guzelbe, Y.I.H. and Filiz, H. (2010), "A new formulation for longitudinally stiffened webs subjected to patch loading using stepwise regression method", Adv. Eng. Software, 41(4), 611-618. https://doi.org/10.1016/j.advengsoft.2009.12.001
  9. Cevik, A., Kurtoglu, A.E., Bilgehan, M., Gulsan, M.E. and Albegmprli, H.M. (2015), "Support vector machines in structural engineering: a review", J. Civil Eng. Manage., 21(3), 261-281. https://doi.org/10.3846/13923730.2015.1005021
  10. Chen, N., Lu, W., Yang, J. and Li, G. (2004), Support Vector Machine in Chemistry, World Scientific, Volume 11.
  11. Cherkassky, V. and Ma, Y. (2002), "Selection of meta-parameters for support vector regression", Proceedings of International Conference on Artificial Neural Networks, Berlin, Heidelberg, August.
  12. Dogaki, M., Murata, M., Kishigami, N., Tanabe, T. and Yonezawa, H. (1990), "Ultimate strength of plate girders with longitudinal stiffeners under patch loading", Technology Reports of Kansai University, 33, 121-132.
  13. Dubas, P. and Tschamper, H. (1990), "Stabilite des ames soumises a une charge concentree et a une flexion globale", Construction Metallique, 27(2).
  14. Fonseca, E.T., Vellasco, P.C.d.S., de Andrade, S.A. and Vellasco, M.M. (2003a), "A patch load parametric analysis using neural networks", J. Constr. Steel Res., 59(2), 251-267. https://doi.org/10.1016/S0143-974X(02)00024-X
  15. Fonseca, E., Vellasco, P.d.S., de Andrade, S. and Vellasco, M. (2003b), "Neural network evaluation of steel beam patch load capacity", Adv. Eng. Software, 34(11), 763-772. https://doi.org/10.1016/S0965-9978(03)00104-2
  16. Fonseca, E.T., de Andrade, S.A., Vellasco, P.C.d.S. and Vellasco, M.M. (2007), "A parametric analysis of the patch load behaviour using a neuro-fuzzy system", J. Constr. Steel Res., 63(2), 194-210. https://doi.org/10.1016/j.jcsr.2006.04.005
  17. Galea, Y., Godart, B., Radouant, I. and Raoul, J. (1987), "Test of buckling of panels subjected to in-plane patch loading", Proc. ECCS Colloquium on Stability of Plate and Shell Structures, Ghent, Belgium.
  18. Graciano, C. (2002), "Patch loading: Resistance of longitudinally stiffened steel girder webs", Ph.D. Dissertation; Lulea tekniska Universitet.
  19. Graciano, C. (2003), "Ultimate resistance of longitudinally stiffened webs subjected to patch loading", Thin-Wall. Struct., 41(6), 529-541. https://doi.org/10.1016/S0263-8231(03)00004-1
  20. Graciano, C. (2005), "Strength of longitudinally stiffened webs subjected to concentrated loading", J. Struct. Eng., 131(2), 268-278. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(268)
  21. Graciano, C. and Edlund, B. (2003), "Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading", J. Constr. Steel Res., 59(1), 27-45. https://doi.org/10.1016/S0143-974X(02)00022-6
  22. Graciano, C. and Johansson, B. (2003), "Resistance of longitudinally stiffened I-girders subjected to concentrated loads", J. Constr. Steel Res., 59(5), 561-586. https://doi.org/10.1016/S0143-974X(02)00046-9
  23. Graciano, C. and Lagerqvist, O. (2003), "Critical buckling of longitudinally stiffened webs subjected to compressive edge loads", J. Constr. Steel Res., 59(9), 1119-1146. https://doi.org/10.1016/S0143-974X(03)00055-5
  24. Janus, K., Karnikova, I. and Skaloud, M. (1988), "Experimental investigation into the ultimate load behaviour of longitudinally stiffened steel webs under partial edge loading", Acta Technica CSAV, 2, 158-195.
  25. Johansson, B. and Lagerqvist, O. (1995), "Resistance of plate edges to concentrated forces", J. Constr. Steel Res., 32(1), 69-105. https://doi.org/10.1016/0143-974X(94)00010-F
  26. Kim, H.S., Park, Y.M., Kim, B.J. and Kim, K. (2018), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., Int. J., 65(2), 141-154.
  27. Kundapura, S. and Hegde, A.V. (2017), "Current approaches of artificial intelligence in breakwaters-A review", Ocean Syst. Eng., Int. J., 7(2), 75-87.
  28. Lagerqvist, O. and Johansson, B. (1996), "Resistance of I-girders to concentrated loads", J. Constr. Steel Res., 39(2), 87-119. https://doi.org/10.1016/S0143-974X(96)00023-5
  29. Li, H.S. and Lu, Z.Z. (2007), "Support vector regression for structural reliability analysis", Acta Aeronautica Et Astronautica Sinica, 28(1), 94. https://doi.org/10.3321/j.issn:1000-6893.2007.01.017
  30. Markovic, N. and Hajdin, N. (1992), "A contribution to the analysis of the behaviour of plate girders subjected to patch loading", J. Constr. Steel Res., 21(1-3), 163-173. https://doi.org/10.1016/0143-974X(92)90025-A
  31. Mirhosseini, R.T. (2017), "Seismic response of soil-structure interaction using the support vector regression", Struct. Eng. Mech., Int. J., 63(1), 115-124.
  32. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, Int. J., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
  33. Roberts, T. and Newark, A. (1997), "Strength of webs subjected to compressive edge loading", J. Struct. Eng., 123(2), 176-183. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(176)
  34. Roberts, T. and Rockey, K. (1979), "A mechanism solution for predicting the collapse loads of slender plate girders when subjected to in-plane patch loading", Institution of Civil Engineers, Proceedings, Pt2.
  35. Rockey, K.C., Bergfelt, A. and Larsson, L. (1978), "Behaviour of longitudinally reinforced plate girders when subjected to inplane patch loading", Chalmers Technology University, Goteborg, Switzerland.
  36. Salkar, R. (1992), "Strength and behavior of webs, with and without stiffeners under local compressive in-plane and eccentric loads (volumes I and II)", Ph.D. Dissertation; University of Maine, USA.
  37. Sherrod, P.H. (2008), DTREG predictive modeling softwar; Users Manual.
  38. Shimizu, S., Yoshida, S. and Okuhara, H. (1987), "An experimental study on patch loaded web plates", Proc. ECCS Colloquium on Stability of Plate and Shell Structures, Ghent, Belgium.
  39. Walbridge, S. and Lebet, J.-P. (2001), Patch Loading Tests of Bridge Girders with Longitudinal Web Stiffeners, EPFL-Ecole polytechnique federale ICOM-Construction metallique.
  40. Wang, L. (2005), Support Vector Machines: Theory and Applications, Springer, Volume 177.
  41. Yang, Y. and Lui, E.M. (2012), "Behavior and design of steel Ibeams with inclined stiffeners", Steel Compos. Struct., Int. J., 12(3), 183-205. https://doi.org/10.12989/scs.2012.12.3.183
  42. Yang, S., Fang, C.Q. and Yuan, Z.J. (2014), "Study on mechanical properties of corroded reinforced concrete using support vector machines", Appl. Mech. Mater., 578, 1556-1561.
  43. Zhang, W. and Song, Z. (2012), "Prediction of concrete corrosion in sulfuric acid by SVM-based method", Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology.
  44. Zhang, C., Ji, J., Gui, Y., Kodikara, J., Yang, S.-Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., Int. J., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361

Cited by

  1. An optimized machine learning based moment-rotation analysis of steel pallet rack connections vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.499