DOI QR코드

DOI QR Code

A Study on the Cementitious Materials as Carbon Capture Materials-Micro-Structure Change by Carbonation Curing

시멘트계 재료의 탄소포집 건설재료로 활용연구 - 탄산화 양생에 의한 미세구조 변화

  • 문은진 (한국건설생활환경시험연구원) ;
  • 김상준 (가천대학교 토목환경공학과) ;
  • 박홍기 (가천대학교 토목환경공학과) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2018.09.05
  • Accepted : 2018.10.11
  • Published : 2018.11.01

Abstract

Recently, there has been a growing interest in the study of treatment of $CO_2$ generated by industrial activities and resource recycling of industrial byproducts. The aim of this study is to investigate the applicability of industrial byproducts that can be used as concrete mixed materials by carbonation curing. For this purpose, the physical and chemical changes of the pastes with research cement(RC), blast furnace slag powder (GGBFS) and circulating fluidized bed combustion ashes (CFBC) were evaluated by carbonation curing. XRD and SEM analyzes were performed to investigate micro-structural changes. As a result, it was confirmed that calcium carbonate, which is a reaction product produced by carbonation curing, filled the space inside the paste and formed a dense micro-structure. Also, as the $CO_2$ curing time increased, it was confirmed that calcium carbonate crystals were grown together to form a dense micro-structure.

최근 산업 활동에 의해 발생하는 $CO_2$에 대한 처리와 산업부산물에 대한 유효처리 및 자원화 방안이 시급히 요구되고 있다. 본 연구는 콘크리트 혼합재료로 활용이 가능한 산업부산물를 대상으로 탄산화 양생에 의한 건설재료로의 적용성 평가를 목적으로 한다. 이러한 목적을 위해 연구용 시멘트(research cement, RC), 고로슬래그 미분말(GGBFS) 및 유동층 보일러 애시(CFBC)를 대상으로 탄산화 양생에 의한 물리 화학적 변화를 비교 검토하였다. 페이스트 내부의 미세조직 변화를 살펴보기 위해 XRD, SEM 분석을 수행하였다. 실험결과 탄산화 양생을 통해 생성된 반응 생성물인 탄산칼슘은 페이스트 내부의 공간을 채우며 밀도가 높은 미세 구조를 형성함을 확인하였다. 또한, $CO_2$ 양생시간이 길어짐에 따라 탄산칼슘 결정이 함께 성장하여 밀실한 미세구조를 이루는 것을 확인하였다.

Keywords

References

  1. Chen, K.-W., Pan S.-Y., Chen, C.-T., Chen, Y.-H., and Chiang, P.-C. (2016), High-gravity carbonation of basic oxygen furnace slag for $CO_2$ fixation and utilization in blended cement, Journal of Cleaner Production, 124, 350-360. https://doi.org/10.1016/j.jclepro.2016.02.072
  2. Pan, S.-Y., Chiang, P.-C., Chen, Y.-H., Tan, C.-S., and Chang, E.-E. (2014), Kinetics of carbonation reaction of basic o. xygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion, Applied Energy, 113, 267-276. https://doi.org/10.1016/j.apenergy.2013.07.035
  3. Zhihua, Z., and Huisingh, D. (2017) Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production, 142, 1055-1064. https://doi.org/10.1016/j.jclepro.2016.06.199
  4. Dijkstra, J. J., Van Zomeren, A., Meeussen, J. C. L., and Comans, R. N. J. (2006), Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum, Environmental Science & Technology, 40, 4481-4487. https://doi.org/10.1021/es052214s
  5. Eloneva, S., Puheloinen, E.M., Kanerva, J., Ekroos, A., Zevenhoven, R., and Fogelholm, C.J. (2010), Co-utilisation of $CO_2$ and steelmaking slags for production of pure $CaCO_3$ - legislative issues, Journal of Cleaner Production, 18, 1833-1839. https://doi.org/10.1016/j.jclepro.2010.07.026
  6. Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C., and Sutter, L. L. (2009), Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environmental Science & Technology, 43, 1986-1992. https://doi.org/10.1021/es802910z
  7. Thiery, M., Dangla, P., Belin, P., Habert, G., and Roussel, N. (2013), Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials, Cement and Concrete Research, 46, 50-65. https://doi.org/10.1016/j.cemconres.2013.01.005
  8. Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., Bui, H. H., and Xu, T. (2015), A laboratory scale study of the aqueous mineral carbonation of coal fly ash for $CO_2$ sequestration, Journal of Cleaner Production, 103, 665-674. https://doi.org/10.1016/j.jclepro.2014.03.005
  9. Zhan, B. J., Poon, C. S., and Shi, C. J. (2013), $CO_2$ curing for improving the properties of concrete blocks containing recycled aggregates, Cement & Concrete Composites, 42, 1-8. https://doi.org/10.1016/j.cemconcomp.2013.04.013
  10. Xuan, D., Zhan, B., and Poon, C. S. (2016), Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation, Journal of Cleaner Production, 133, 1235-1241. https://doi.org/10.1016/j.jclepro.2016.06.062
  11. El-Hassan, H., and Shao, Y. X. (2014), Carbon storage through concrete block carbonation curing, Journal of Clean Energy Technologies, 2(3), 287-291.
  12. Zhan, B. J., Xuan, D. X., Poon, C. S., and Shi, C. J. (2016), Effect of curing parameters on $CO_2$ curing of concrete blocks containing recycled aggregates, Cement & Concrete Composites, 71, 122-130. https://doi.org/10.1016/j.cemconcomp.2016.05.002

Cited by

  1. 산/염기성 물질 주입에 따른 칼슘이온 분리 특성 연구 vol.31, pp.1, 2018, https://doi.org/10.14478/ace.2020.1001