DOI QR코드

DOI QR Code

Application Method for SAPS Substrate Materials According to Mine Drainage Properties

광산배수 수질특성에 따른 SAPS 기질물질의 적용방안 개선 연구

  • 박현성 (한국광해관리공단 광해기술원) ;
  • 김동관 (한국광해관리공단 광해기술원) ;
  • 오연수 (한국광해관리공단 광해기술원) ;
  • 지원현 (한국광해관리공단 광해기술원) ;
  • 박미정 (한국광해관리공단 광해기술원) ;
  • 이지수 (한국광해관리공단 광해기술원) ;
  • 이종운 (전남대학교 에너지자원공학과) ;
  • 고명수 (강원대학교 에너지자원공학전공)
  • Received : 2018.10.04
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

Batch experiments were carried out to assess the influence of organic substrate in SAPS using five different mine drainages. The mine drainages types were divided into two groups according to their acidity. Mushroom compost was used in the mine drainage remediation experiments as a substrate materials. The pH, TOC, and cation concentrations rapidly increased in all batch experiments after reaction. The ORP values decreased at below -300 mV after the $14^{th}$ day. The dissolved Fe and S had decreased by iron- and sulfate-reduction after 14 days. The dissolved Fe, Al, Cu, and Zn could be removed as precipitates of metal (hydro)oxides and sulfides at the experimental conditions. However, abundant sulfate remained in the SM mine drainage after remediation experiments. The SM mine was highly acidic and had high $Fe^{3+}$ concentration, initially. Therefore, the results indicated that the conventional design of an organic substrate layer in SAPS would have to be modified depending on the acidity of the mine drainage.

광산배수의 지구화학적 특징에 따라 SAPS에 적용하는 기질물질이 정화효율에 미치는 영향을 평가하였다. 실험에 사용한 광산배수는 총 5개로 각각의 산도에 따라 두 그룹으로 나누었다. 기질물질은 양송이 버섯 폐상퇴비를 사용하였다. 실험을 진행하는 동안 모든 모든광산배수의 pH가 7.0 이상으로 상승하였고, TOC 및 주요 양이온의 농도가 증가하였다. 약 14일 경과 후 ORP는 -300 mV를 보여 환원환경이 조성된 것으로 판단되며 Fe와 S의 거동에서도 철환원과 황환원 반응이 나타났다. 용존된 Fe, Al, Cu, Zn는 실험이 진행된 pH와 ORP조건에서 금속(수)산화물 또는 황화물로 침전 및 제거 되었다. 그러나 산도가 높고 $Fe^{3+}$의 농도가 높은 SM의 광산배수에서는 실험이 진행되는 동안 다량의 황산염이 용존되어 나타났다. 본 결과를 바탕으로 SAPS 설계 시 일관된 기질물질 층을 적용하기 보다는 광산배수의 지구화학적 특성을 고려하여 기질물질 층의 높이와 기능성 기질물질 층을 고려해야 한다.

Keywords

References

  1. Be'chard, G., Yamazaki, H., Gould, W.D., and Be'dard, P., 1994. Use of cellulosic substrates for the microbial treatment of acid mine drainage. J. Environ. Qual., 23, 111-116.
  2. Benedetto, J.S., De Almeida, S.K., Gomes, H.A., Vazoller, R.A., and Ladeira, A.C.Q., 2005. Monitoring of sulfate-reducing bacteria in acid water. Minerals Engineering, 18, 1341-1343. https://doi.org/10.1016/j.mineng.2005.08.012
  3. Chen, B.Y., Utgikar, V.P., Harmon, S.M., Tabak, H.H., Bishop, D.F., and Govind, R., 2000. Studies of biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int. Biodeterior. Biodegrad., 46, 11-18. https://doi.org/10.1016/S0964-8305(00)00054-8
  4. Clesceri, L.S., Greenberg, A.E., and Eaton, A.D., 1998. Standard Methods for the Examination of Water and Wastewater (20th Ed), American Public Health Association (APHA), Washington DC, USA,1220p.
  5. David J.R., Vijayakumar S., Souhail R. Al-Abeda, and Derrick, A., 2007. Statistical validation of sulfate quantification methods used for analysis of acid mine drainage. Talanta, 71(1), 303-311. https://doi.org/10.1016/j.talanta.2006.04.002
  6. Demchak, J., Morrow, T., and Skousen, J., 2001. Treatment of acid mine drainage by four vertical flow wetlands in pennsylvania. Geochemsitry: Exploration, Environment, Analysis, 1, 71-80. https://doi.org/10.1144/geochem.1.1.71
  7. Ha, W.K., Lee, J.U., and Jung, M.C., 2006. Study on geomicrobiological reductive precipitation of uranium and its long-term stabilization. The Korean Society of Mineral and Energy Resources Engineers, 43(4), 331-338.
  8. Jong, T., and Parry, D.L., 2004. Heavy metal speciation in solid-phase materials from abacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis. J. Environ. Monit., 6, 278-285. https://doi.org/10.1039/b316586h
  9. Ko, M.S., Park, H.S., and Lee, J.U., 2016. Arsenic removal from mine drainage by biogechin fes and feasibility study of sulfate reducing bioreactor. J. Korean Society for Mineral and Energy Resources Engineering, 53(6), 555-561. https://doi.org/10.12972/ksmer.2016.53.6.555
  10. Krawczyk, D. and N. Gonglewski., 1959. Determining suspended solids using a spectrophotometer. Sewage Ind. Wastes, 31(10), 1159-1164.
  11. Lens, P., Vallero, M., Esposito, G., and Zandvoort, M., 2002. Perspectives of sulfate reducing bioreactors in environmental biotechnology. Re/Views in Environmental Science and Bio/Technology, 1, 311-325. https://doi.org/10.1023/A:1023207921156
  12. Logan, M.V., Reardon, K.F., Figueroa, L.A., McLain, J.E.T., and Ahmann, D.M., 2005. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Water Research, 39, 4537-4551. https://doi.org/10.1016/j.watres.2005.08.013
  13. Mine Reclamation Corporation, 2010. Development of alternative substrates promoting performance of mine drainage treatment system, MIRECO report 2010-53, Wonju, Korea, 52p.
  14. Mine Reclamation Corporation, 2016. Development of maintenance and management technology on treatment system of mine drainage, MIRECO report 2016-51, Wonju, Korea, 3p.
  15. Mine Reclamation Corporation, 2014. Development of passive alkalinity producing system for mine drainage with high level of acidity concentrations, MIRECO report 2014-79, Wonju, Korea, p.11-49.
  16. Neculita, C.M., Zagury Gerald J., and Bussiere B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J. Environ. Qual., 36, 1-16. https://doi.org/10.2134/jeq2006.0066
  17. Park, H.S., Ko, M.S., Lee, S.H., Hong, J.H., Cho, S.H., Yoo, J.Y., Cho, J.H., and Lee, J.U., 2016. Activity evaluation of sulfate reducing bacteria for the sulfate removal in the mine drainage. The Korean Society of Mineral and Energy Resources Engineers, 53(5), 387-397. https://doi.org/10.12972/ksmer.2016.53.5.387
  18. PIRAMID Consortium, 2003. Engineering guidelines for the passive remediation of acidic and metalliferous mine drainage and similar wastewaters, EVK1-CT-1999-000021, Newcastle, UK, 166p.
  19. Sheoran, A.S., Sheoran V., and Choudhary, R.P., 2010. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Minerals Engin., 23, 1073-1100. https://doi.org/10.1016/j.mineng.2010.07.001
  20. Song, Y., Fitch, M., Burken, J., Nass, L., Chilukiri, S., Gale, N., Ross, C., 2001. Lead and zinc removal by laboratory-scale constructed wetlands. Water Environ. Res., 73, 37-44. https://doi.org/10.2175/106143001X138660
  21. Tabak, H.H. and Govind, R. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation, 14, 437-452. https://doi.org/10.1023/A:1027332918844
  22. Yao, L., Li, G., Dang, Z., He, Z., Zhou, C., and, Yang, B., 2009. Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant and Soil, 316(1), 117-124. https://doi.org/10.1007/s11104-008-9764-4
  23. Zagury, G.J., Kulnieks, V., and Neculita, C.M., 2006. Charaterization and reactivity assessment of organic substrates for sulfate reducing bacteria in acid mine drainage treatment. Chemosphere, 64, 944-954. https://doi.org/10.1016/j.chemosphere.2006.01.001
  24. Ziemkiewicz, P.F., Skousen, J.G., Simmons, J., 2003. Long-term performance of passive acid mine drainage treatment systems. Mine Water Environ., 22, 118-129. https://doi.org/10.1007/s10230-003-0012-0

Cited by

  1. 광산배수 처리를 위한 세멘테이션 공정 중 구리제거효율에 대한 철분 응집의 영향 vol.28, pp.5, 2019, https://doi.org/10.7844/kirr.2019.28.5.74
  2. Fundamental Study on Adsorption of Manganese in Water using Manganese-oxide coated Sand (MCS) Generated in a Filtration Tank of a Mine Drainage Treatment Facility vol.57, pp.3, 2018, https://doi.org/10.32390/ksmer.2020.57.3.249
  3. 자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가 vol.53, pp.3, 2018, https://doi.org/10.9719/eeg.2020.53.3.235
  4. 산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가 vol.53, pp.6, 2018, https://doi.org/10.9719/eeg.2020.53.6.687