DOI QR코드

DOI QR Code

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A. (Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional) ;
  • Hassan, Kamrul (Institute for Infrastructural Engineering, Western Sydney University) ;
  • Jern, Ker Pin (Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional)
  • Received : 2018.02.13
  • Accepted : 2018.10.22
  • Published : 2018.11.25

Abstract

Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

Keywords

Acknowledgement

Supported by : Universiti Tenaga Nasional

References

  1. Akyildiz, I.F. and Stuntebeck, E.P. (2006), "Wireless underground sensor networks: Research challenges", Ad Hoc Networks, 4, 669-686. https://doi.org/10.1016/j.adhoc.2006.04.003
  2. Almeida, V.A.D., Baptista, F.G. and Aguiar, P.R. (2015), "Piezoelectric transducers assessed by the pencil lead break for impedance-based structural health monitoring", IEEE Sensor. J., 15, 693-702. https://doi.org/10.1109/JSEN.2014.2352171
  3. Annamdas, V.G.M., Bhalla, S. and Soh C.K. (2017), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16, 324-346. https://doi.org/10.1177/1475921716653278
  4. Aszkler, C. (2005), "Chapter 5: Acceleration, Shock and Vibration Sensors," from Sensor Technology Handbook.
  5. Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y. and Zeng, Z. (2017), "Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification", Struct. Health Monit., doi: 10.1177/1475921717701462.
  6. Baifeng, J. and Weilian, Q. (2008), "The research of acoustic emission techniques for non destructive testing and health monitoring on civil engineering structures", Proceedings of the International Conference on Condition Monitoring and Diagnosis, 21-24 April 2008, Beijing.
  7. Bao, Y., Beck, J.L. and Li, H. (2011), "Compressive sampling for accelerometer signals in structural health monitoring", Struct. Health Monit., 10, 235-246. https://doi.org/10.1177/1475921710373287
  8. Bao, Y., Shi, Z., Wang, X. and Li, H. (2017), "Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717721457.
  9. Barbezat, M., Brunner, A., Flueler, P., Huber, C. and Kornmann, X. (2004), "Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors", Sensor. Actuat. A: Phys., 114, 13-20. https://doi.org/10.1016/j.sna.2004.01.062
  10. Basumallick, N., Chatterjee, I., Biswas, P. and Dasgupta, K.B.S. (2012), "Fiber Bragg grating accelerometer with enhanced sensitivity", Sensor. Actuat. A: Phys., 173(1), 108-115. https://doi.org/10.1016/j.sna.2011.10.026
  11. Bhuiyan, M.Z.A., Wang, G., Cao, J. and Wu, J. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE T. Comput., 64, 382-395. https://doi.org/10.1109/TC.2013.195
  12. Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27, 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
  13. Bogdabovic, B.A., Mufti, A.A., Bagchi, A. (2005), "SHM data interpretation and structural condition assessment of the Manitoba Golden Boy", Proceedings of the SPIE 5767, 213-224.
  14. Capoluongo, P., Ambrosino, C., Campopiano, S., Cutolo, A., Giordano, M., Bovio, I., Lecce, L. and Cusano, A. (2007), "Modal analysis and damage detection by Fiber Bragg grating sensors", Sensor. Actuat. A: Phys., 133, 415-424. https://doi.org/10.1016/j.sna.2006.04.018
  15. Casas, J.R. (2003), "Fiber optic sensors for bridge monitoring", J. Bridge Eng., 8(6), 362-373. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362)
  16. Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., 14(5), 981-1004. https://doi.org/10.12989/sss.2014.14.5.981
  17. Cazzulani, G., Moschini, S., Resta, F. and Ripamonti, F. (2013), "A diagnostic logic for preventing structural failure in concrete displacing boom", Automat. Constr., 35, 499-506. https://doi.org/10.1016/j.autcon.2013.06.004
  18. Chen, J., Cheng, F., Xiong, F., Ge, Q. and Zhang, S. (2017), "An experimental study: Fiber Bragg grating-hydrothermal cycling integration system for seepage monitoring of rockfill dams", Struct. Health Monit., 16, 50-61. https://doi.org/10.1177/1475921716661874
  19. Chen, Z., Li, H. and Bao, Y. (2018), "Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach", Struct. Health Monit., doi: 10.1177/1475921718788703.
  20. Chen, Z., Bao, Y., Li, H. and Spencer, B.F. (2017), "A novel distribution regression approach for data loss compensation in structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717745719.
  21. Cheng, L., Zhang, H. and Li, Q. (2007), "Design of a capacitive flexible weighing sensor for vehicle WIM system", Sensors, 7, 1530-1544. https://doi.org/10.3390/s7081530
  22. Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.J. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", J. Steel Struct., 8, 267-275.
  23. Choi, M., Shrestha, M.M., Lee J. and Park, C. (2017), "Development of a laser-powered wireless ultrasonic device for aircraft structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921716686963.
  24. Civionics (2009), Custom wireless sensing and control solutions. Available on: http://Civionics.com/uncategorized/about-Civionics (accessed on 22 December 2011).
  25. Currano, L.J., Bauman, S., Churaman, W., Peckerar, M., Wienke, J., Kim, S., Yu, M. and Balachandran, B. (2008), "Latching ultra-low power MEMS shock sensors for acceleration monitoring", Sensor. Actuat. A: Phys., 147, 490-497. https://doi.org/10.1016/j.sna.2008.06.009
  26. Daly, P. (1993), "Navstar GPS and GLONASS: Global satellite navigation systems", Electro Commun. Eng. J., 5(6), 349-357. https://doi.org/10.1049/ecej:19930069
  27. Edward, S., Kerop, J. and Ratan, J.C. (2004), "Wireless intelligent sensor network for autonomous", Struct. Health Monit., Available on: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.4283.
  28. Fang, K., Liu, C. and Teng, J. (2017), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717689967.
  29. Farrar, C.R., Allen, D.W., Park, G., Ball, S. and Masquelier, M.P. (2006), "Coupling sensing hardware with data interrogation software for structural health monitoring", Shock Vib., 13, 519-530. https://doi.org/10.1155/2006/164382
  30. Feng, S. and Jia, J. (2017), "Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm", Struct. Health Monit., doi: 10.1177/1475921717689967.
  31. Guardalben, L., Villalba, L.J.G., Buiati, F., Sobral, J.B.M. and Camponogara, E. (2010), "Self-configuration and selfoptimization process in heterogeneous wireless networks", Sensor, 11, 425-454. https://doi.org/10.3390/s110100425
  32. Guemes, J.A. and Menendez, J.M. (2002), "Response of Bragg grating fiber-optic sensors when embedded in composite laminates", Compos. Sci. Technol., 62, 959-966. https://doi.org/10.1016/S0266-3538(02)00010-6
  33. Guy, K. and Jeff, S. (2011), "Principles of piezoelectri accelerometers", Sensors, Available on: http://www.sensorsmag.com>Sensors>Acceleration/Vibration (accessed on 10 December 2011).
  34. Ha, D.W., Park, H.S., Choi, S.W. and Kim, Y. (2013), "A wireless MEMS-based inclinometer sensor node for structural health monitoring", Sensors, 13, 16090-16104. https://doi.org/10.3390/s131216090
  35. Hackmann, G., Guo, W., Yan, G., Sun, Z., Lu, C. and Dyke, S. (2014), "Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks", IEEE T. Para. Distr. Sys., 25, 63-72. https://doi.org/10.1109/TPDS.2013.30
  36. Han, B., Yu, Y. and Ou, J. (2008), "Development of a wireless stress/strain measurement system integrated with pressuresensitive nickel powder-filled cement-based sensors", Sensor. Actuat. A: Phys., 147, 536-543. https://doi.org/10.1016/j.sna.2008.06.021
  37. Hassan, M.K., Zain, M.F.M, Hannan, M.A. and Jamil, M. (2010), "Sensor placement technique and GUI system for bridge girder monitoring", Int. J. Civil Struct. Eng., 1, 583-590.
  38. Hassan, M.K., Zain, M.F.M., Jamil, M. and Hannan, M.A. (2011), "Sensor network for bridge girder crack identification and monitoring system", Proceedings of the IEEE Int. Conf. Intelligent Computing and Intelligent System (ICIS2011), Kuala Lumpur.
  39. Hong, K., Lee, J., Choi, S.W., Kim, Y. and Park, H.S. (2013), "A strain-based load identification model for beams in building structures", Sensors, 13, 9909-9920. https://doi.org/10.3390/s130809909
  40. Hu, Y., Rieutort-Louis, W.S., Sanz-Robinson, J., Huang, L., Glisic, B., Sturm, J.C., Wagner, S. and Verma, N. (2014), "Large-scale sensing system combining large-area electronics and CMOS ICs for structural-health monitoring", IEEE J. Solid-State Circuits, 49, 513-523. https://doi.org/10.1109/JSSC.2013.2295979
  41. Huang, Y., Beck, J.L., Wu, S. and Li, H. (2014), "Robust Bayesian compressive sensing for signals in structural health monitoring", Comput.-Aided Civil Infrastruct. Eng., 29, 160-179. https://doi.org/10.1111/mice.12051
  42. Hyeonseok, L., Hyun-Jun, P., Sohn, H. and Il-Bum, K. (2010), "Integrated guided wave generation and sensing using a single laser source and optical fibers", Meas. Sci. Technol., 21, 105207-11. https://doi.org/10.1088/0957-0233/21/10/105207
  43. Jang, W.S., Healy, W.M. and Skibniewski, M.J. (2008), "Wireless sensor networks as part of a web-based building environmental monitoring system", Automat. Constr., 17, 729-736. https://doi.org/10.1016/j.autcon.2008.02.001
  44. Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monit., 20, 1240-1254. https://doi.org/10.1002/stc.1532
  45. Kamel, I. and Juma, H. (2011), "A lightweight data integrity scheme for sensor networks", Sensors, 11, 4118-4136. https://doi.org/10.3390/s110404118
  46. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H. and Celler, B.G. (2006). "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring", IEEE. T. Inf. Technol. Biomed., 10, 156-167. https://doi.org/10.1109/TITB.2005.856864
  47. Kareem, A., Kijewski-Correa, T. and Bashor, R. (2005), "GPS: A new tool for structural health monitoring", APT Bulletin: J. Preservation Technol., 36(1), 13-18.
  48. Kerrouche, A., Boyle, W., Sun, T. and Grattan, K. (2010), "Design and in-the-field performance evaluation of compact FBG sensor system for structural health monitoring applications", Sensor. Actuat. A: Phys., 151, 107-112. https://doi.org/10.1016/j.snb.2010.09.039
  49. Kim, J.T., Nguyen, K.D. and Huynh, T.C. (2013), "Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique", Smart Struct. Syst., 12(3), 381-397. https://doi.org/10.12989/sss.2013.12.3_4.381
  50. Kinet, D., Megret, P., Goossen, W., Heider, D. and Caucheteur, C. (2014), "Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions", Sensors, 14, 7394-7419. https://doi.org/10.3390/s140407394
  51. Kominami, D., Sugano, M., Murata, M. and Hatauchi, T. (2010), "Energy-efficient receiver-driven wireless mesh sensor networks", Sensors, 11, 111-137. https://doi.org/10.3390/s110100111
  52. Lee, D., Jeon, H. and Myung, H. (2014), "Pose-graph optimized displacement estimation for structural displacement monitoring", Smart Struct. Syst., 14(5), 943-960. https://doi.org/10.12989/sss.2014.14.5.943
  53. Lei, Q., Shenfang, Y., Xiaoling, S. and Tianxiang, H. (2012), "Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability", Smart Mater. Struct., 21, 075032-14. https://doi.org/10.1088/0964-1726/21/7/075032
  54. Leng, J. and Asundi, A. (2003), "Structural health monitoring of smart composite materials by using EFPI and FBG sensors", Sensor. Actuat. A: Phys., 103, 330-340. https://doi.org/10.1016/S0924-4247(02)00429-6
  55. Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
  56. Liu, P., Lim, H.J., Yang, S., Sohn, H., Lee, C.H., Yi, Y., Kim, D., Jung, J. and Bae, I. (2017), "Development of a "stick-and-detect" wireless sensor node for fatigue crack detection", Struct. Health Monit., 16, 153-163. https://doi.org/10.1177/1475921716666532
  57. Liu, Z., Yu, Y., Liu, G., Wang, J. and Mao, X. (2014), "Design of a wireless measurement system based on WSNs for large bridges", Measurement, 50, 324-330. https://doi.org/10.1016/j.measurement.2014.01.013
  58. Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B. and Wait, J.R. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(3), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
  59. Lynch, J.P. and Loh, K.J. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38, 91-130. https://doi.org/10.1177/0583102406061499
  60. Lynch, J.P., Partridge, A., Law, K.H., Kenny, T.W., Kiremidjian, A.S. and Carryer, E. (2003), "Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring", J. Aerosp. Eng., 16, 108-114. https://doi.org/10.1061/(ASCE)0893-1321(2003)16:3(108)
  61. Maheshwari, M., Tjin, S.C. and Asundi, A. (2016), "Combined fiber Bragg grating and fiber optic polarimetric sensors on a single fiber for structural health monitoring of two-dimensional structures", Struct. Health Monit., 15, 599-609. https://doi.org/10.1177/1475921716654132
  62. Malekzadeh, M., Gul, M., Kwon, I.B. and Catbas, N. (2014), "An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis", Smart Struct. Syst., 14(5), 917-942. https://doi.org/10.12989/sss.2014.14.5.917
  63. Mufti, A.A. (2003), "Integration of sensing in civil structures: development of the new discipline of Civionics", Struct. Health Monit. Intel. Infrastruct., 1, 119-129.
  64. Mufti, A.A., Bakht, B., Tadros, G., Horosko, A.T. and Sparks, G. (2007), "Civionics-a new paradigm in design, evaluation, and risk analysis of civil structures", J. Int. Mat. Syst. Str., 18, 757-763. https://doi.org/10.1177/1045389X06074572
  65. Mufti, A.A. and Neale, K.W. (2008), "State-of-the-art of FRP and SHM applications in bridge structures in Canada", Compos. Res., 2, 60-69.
  66. Nagayama, T. (2007), Structural Health Monitoring Using Smart Sensors, PhD Dissertation, University of Illinois Urbana-Champaign, Urbana, IL USA.
  67. Nasrollahi, A., Deng, W., Ma, Z. and Rizzo, P. (2017), "Multimodal structural health monitoring based on active and passive sensing", Struct. Health Monit., 10.1177/1475921717699375 .
  68. Grady, A. (2000), "Transducer/sensor excitation and measurement techniques", Analog Dialogue, 34, 1-6.
  69. Omega (2012), The Thermosistor. http://www.princeton.edu/-cavalab/tutorials/public/Thermocouples.pdf (accessed on 11 December 2016).
  70. Park, G., Rosing, T., Todd, M.D., Farrar, C.R. and Hodgkiss, W. (2008), "Energy harvesting for structural health monitoring sensor networks", J. Infrastruct. Syst., 14, 64-79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)
  71. Peng, C., Fu, Y. and Spencer, B.F. (2017), Sensor Fault Detection, Identification, and Recovery Techniques for Wireless Sensor Networks: A Full-scale Study. In ANCRiSST2017.
  72. Peng-hui, L., Hong-ping, Z., Hui, L. and Shun, W. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., 15(1), 227-244. https://doi.org/10.12989/sss.2015.15.1.227
  73. Rivera, E., Mufti, A.A. and Thomson, D.J. (2007), "Civionics for structural health monitoring", Can. J. Civil Eng., 34, 430-437. https://doi.org/10.1139/l06-159
  74. Roberts, G.W., Meng, X. and Dodson, A.H. (2004). "Integrating a global positioning system and accelerometers to monitor the deflection of bridges", J. Surv. Eng., 130(2), 65-72. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(65)
  75. Sadeghian, V. and Vecchio, F. (2015), "A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures", Comput. Concrete, 16(2), 287-309. https://doi.org/10.12989/cac.2015.16.2.287
  76. Sbarufatti, C., Manes, A. and Giglio, M. (2014), "Application of sensor technologies for local and distributed structural health monitoring", Struct. Control Health Monit., 21, 1057-1083. https://doi.org/10.1002/stc.1632
  77. Seok, B.I., Stefan, H. and Young, J.K. (2013), "Summary review of GPS technology for structural health monitoring", J. Struct. Eng., 139, 1653-1664. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000475
  78. Shen, Y. and Giurgiutiu, V. (2014), "Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors", J. Int. Mat. Syst. Str., 25, 506-520. https://doi.org/10.1177/1045389X13500572
  79. Shih, J.L., Kobayashi, M. and Jen, C.K. (2010), "Flexible ultrasonic transducers for structural health monitoring of pipes at high temperatures", IEEE T. Ultrason. Ferr., 57(9), 2103-2110. https://doi.org/10.1109/TUFFC.2010.1659
  80. Soil (2011), Vibrating wire crack meter. https://www.bsil.com.cn/Downloads/DataSheets/J2_VW%20Crackmeter_ds.pdf (accessed on 11 January 2011).
  81. Stabile, T.A., Giocoli, A., Perrone, A., Palombo, A., Pascucci, S. and Pignatti, S. (2012), "A new joint application of non-invasive remote sensing techniques for structural health monitoring", J. Geophys. Eng,. 9, 53-63. https://doi.org/10.1088/1742-2132/9/4/S53
  82. Sun, M., Staszewski, W. and Swamy, R. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng., 2010(2010), Article ID 724962, 13 pages.
  83. Tastani, S. and Pantazopoulou, S. (2008), "Detailing procedures for seismic rehabilitation of reinforced concrete members with fiber reinforced polymers", Eng. Struct., 30, 450-461. https://doi.org/10.1016/j.engstruct.2007.03.028
  84. Taylor, S.G., Raby, E.Y., Farinholt, K.M., Park, G. and Todd, M. (2016), "Active-sensing platform for structural health monitoring: Development and deployment", Struct. Health Monit., 15, 413-422. https://doi.org/10.1177/1475921716642171
  85. Teng, J., Lu, W., Wen, R. and Zhang, T. (2015), "Instrumentation on structural health monitoring systems to real world structures", Smart Struct. Syst., 15(1), 151-167. https://doi.org/10.12989/sss.2015.15.1.151
  86. Tensometer (2012), http://en.wikipedia.org/wiki/Tensometer (accessed on 14 December 2012).
  87. Ting-Hua, Y., Hong-Nan, L. and Xu-Dong, Z. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21, 105033-9. https://doi.org/10.1088/0964-1726/21/10/105033
  88. Tondreau, G. and Deraemaeker, A. (2013), "Local modal filters for automated data-based damage localization using ambient vibrations", Mech. Syst. Signal Pr., 39, 162-180. https://doi.org/10.1016/j.ymssp.2013.03.020
  89. Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, L., Cerni, G., Saleem, H., Alessandro, A. and Corradini, A. (2014), "Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors", Smart Mater. Struct., 23, 045023. https://doi.org/10.1088/0964-1726/23/4/045023
  90. Venugopalan, T., Sun, T. and Grattan, K. (2008), "Long period grating-based humidity sensor for potential structural health monitoring", Sensor. Actuat. A: Phys., 148, 57-62. https://doi.org/10.1016/j.sna.2008.07.015
  91. Wang, D.H. and Liao, W.H. (2006), "Wireless transmission for health monitoring of large structures", IEEE T. Instrum. Meas., 55, 972-981. https://doi.org/10.1109/TIM.2006.873801
  92. Wang, Y.H., Lee, C.Y. and Chiang, C.M.A. (2007), "MEMS-based air flow sensor with a free-standing micro-cantilever structure", Sensors, 7, 2389-2401. https://doi.org/10.3390/s7102389
  93. Watson, C., Watson, T. and Coleman, R. (2007), "Structural monitoring of cable-stayed bridge: Analysis of GPS versus modeled deflections", J. Surv. Eng., 133(1), 23-28. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:1(23)
  94. Wong, L., Chiu, W.K. and Kodikara, J. (2017), "Using distributed optical fibre sensor to enhance structural health monitoring of a pipeline subjected to hydraulic transient excitation", Struct. Health Monit., doi: 10.1177/1475921717691036.
  95. Xiao, H., Li, H. and Ou, J. (2011), "Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam", Sensor. Actuat. A: Phys., 167, 581-587. https://doi.org/10.1016/j.sna.2011.03.012
  96. Yang, C.C. and Hsu, Y.L. (2009), "Development of a wearable motion detector for tele-monitoring and real-time identification of physical activity", Telemed. J. E. Health, 15, 62-72. https://doi.org/10.1089/tmj.2008.0060
  97. Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure", Mech.Syst. Signal Pr., 74, 165-182. https://doi.org/10.1016/j.ymssp.2015.11.009
  98. Ye, X. W., Su, Y. H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Scientific World J., 2014 (2014), Article ID 652329, 11 pages. http://dx.doi.org/10.1155/2014/652329.
  99. Yi, TH., Li, H.N. and Zhang, XD. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart Struct. Syst., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
  100. Yu, L. and Tian, Z. (2013), "Lamb wave structural health monitoring using a hybrid PZT-laser vibrometer approach", Struct. Health Monit., 12, 469-483. https://doi.org/10.1177/1475921713501108
  101. Zeng, Y., Sreenan, C.J., Sitanayah, L., Xiong, N., Park, H. and Zheng, G. (2011), "An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring", Sensors, 11, 2899-2919. https://doi.org/10.3390/s110302899
  102. Zhang, J., Zhou, Y. and Li, P.J. (2015), "Practical issues in signal processing for structural flexibility identification", Smart Struct. Syst., 15(1), 209-225. https://doi.org/10.12989/sss.2015.15.1.209
  103. Zhang, Y., Liu, W., Zhang, H., Yang, J. and Zhao, H. (2011), "Design and analysis of a differential waveguide structure to improve magnetostrictive linear position sensors", Sensors, 11, 5508-5519. https://doi.org/10.3390/s110505508

Cited by

  1. Comparison of multiple monitoring techniques for the testing of a scale model timber Warren truss vol.6, pp.None, 2018, https://doi.org/10.1139/facets-2021-0001
  2. Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System vol.21, pp.2, 2021, https://doi.org/10.3390/s21020648
  3. Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181
  4. Measurement of Acceleration Response Functions with Scalable Low-Cost Devices. An Application to the Experimental Modal Analysis vol.21, pp.19, 2021, https://doi.org/10.3390/s21196637
  5. Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-020-00451-8