DOI QR코드

DOI QR Code

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein (Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Ayoobian, Navid (Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Ansarifar, Gholam Reza (Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan)
  • Received : 2017.08.27
  • Accepted : 2018.04.27
  • Published : 2018.08.25

Abstract

Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

Keywords

References

  1. H.L. Akin, V. Altin, Rule-based fuzzy logic controller for a PWR-type nuclear power plant, IEEE Trans. Nucl. Sci. 38 (1991) 883-890. https://doi.org/10.1109/23.289405
  2. M.N. Khajavi, M.B. Menhaj, A.A. Suratgar, A neural network controller for load following operation of nuclear reactors, Ann. Nucl. Energy 29 (2002) 751-760. https://doi.org/10.1016/S0306-4549(01)00075-5
  3. M.G. Na, D.W. Jung, S.H. Shin, J.W. Jang, K.B. Lee, Y.J. Lee, A model predictive controller for load-following operation of PWR reactors, IEEE Trans. Nucl. Sci. 52 (2005) 1009-1020. https://doi.org/10.1109/TNS.2005.852651
  4. S.M.H. Mousakazemi, N. Ayoobian, G.R. Ansarifar, Control of the reactor core power in PWR using optimized PID controller with the real-coded GA, Ann. Nucl. Energy 118 (2018) 107-121. https://doi.org/10.1016/j.anucene.2018.03.038
  5. B.R. Upadhyaya, M.R. Lish, J.W. Hines, R.A. Tarver, Instrumentation and control strategies for an integral pressurized water reactor, Nucl. Eng. Technol. 47 (2015) 148-156. https://doi.org/10.1016/j.net.2015.01.001
  6. S. Bennett, The past of PID controllers, Annu. Rev. Control 25 (2001) 43-53. https://doi.org/10.1016/S1367-5788(01)00005-0
  7. W.K. Ho, C.C. Hang, L.S. Cao, Tuning of PID controllers based on gain and phase margin specifications, Automatica 31 (1995) 497-502. https://doi.org/10.1016/0005-1098(94)00130-B
  8. K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology, IEEE Trans. Control Syst. Technol. 13 (2005) 559-576. https://doi.org/10.1109/TCST.2005.847331
  9. K.J. Astrom, T. Hagglund, Advanced PID Control, ISA-The Instrumentation, Systems and Automation Society, 2006.
  10. X. Li, D. Ruan, Comparative study of fuzzy control, PID control, and advanced fuzzy control for simulating a nuclear reactor operation, Int. J. Gen. Syst. 29 (2000) 263-279. https://doi.org/10.1080/03081070008960933
  11. C. Liu, J.-F. Peng, F.-Y. Zhao, C. Li, Design and optimization of fuzzy-PID controller for the nuclear reactor power control, Nucl. Eng. Des. 239 (2009) 2311-2316. https://doi.org/10.1016/j.nucengdes.2009.07.001
  12. J.-H. Ye, J.-M. Yi, H.-Y. Ji, Research on pressurizer water level control of nuclear reactor based on RBF neural network and PID controller, in: Mach. Learn. Cybern. (ICMLC), 2010 Int. Conf, IEEE, 2010, pp. 1486-1489.
  13. Z. Dong, PD power-level control design for PWRs: a physically-based approach, IEEE Trans. Nucl. Sci. 60 (2013) 3889-3898. https://doi.org/10.1109/TNS.2013.2277866
  14. J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE Int. Conf. Neural Networks, Perth, Aust., 1995, pp. 1942-1948.
  15. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Evol. Comput. Proceedings, 1998. IEEE World Congr. Comput. Intell. 1998 IEEE Int. Conf, IEEE, 1998, pp. 69-73.
  16. A.A. de Moura Meneses, M.D. Machado, R. Schirru, Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor, Prog. Nucl. Energy 51 (2009) 319-326. https://doi.org/10.1016/j.pnucene.2008.07.002
  17. C.M.N.A. Pereira, C.M.F. Lapa, A.C.A. Mol, A.F. Da Luz, A particle swarm optimization (PSO) approach for non-periodic preventive maintenance scheduling programming, Prog. Nucl. Energy 52 (2010) 710-714. https://doi.org/10.1016/j.pnucene.2010.04.009
  18. S.S. Khorramabadi, M. Boroushaki, C. Lucas, Emotional learning based intelligent controller for a PWR nuclear reactor core during load following operation, Ann. Nucl. Energy 35 (2008) 2051-2058. https://doi.org/10.1016/j.anucene.2008.05.014
  19. D.L. Zhang, S.Z. Qiu, G.H. Su, C.L. Liu, L.B. Qian, Analysis on the neutron kinetics for a molten salt reactor, Prog. Nucl. Energy 51 (2009) 624-636. https://doi.org/10.1016/j.pnucene.2008.11.008
  20. K. Torabi, O. Safarzadeh, A. Rahimi-Moghaddam, Robust control of the PWR core power using quantitative feedback theory, IEEE Trans. Nucl. Sci. 58 (2011) 258-266. https://doi.org/10.1109/TNS.2010.2094207
  21. G.R. Ansarifar, H.R. Akhavan, Sliding mode control design for a PWR nuclear reactor using sliding mode observer during load following operation, Ann. Nucl. Energy 75 (2015) 611-619. https://doi.org/10.1016/j.anucene.2014.09.019
  22. D.L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993.
  23. P. Ramaswamy, M. Riese, R.M. Edwards, K.Y. Lee, Two approaches for automating the tuning process of fuzzy logic controllers [pwr application], in: Decis. Control. 1993., Proc. 32nd IEEE Conf, IEEE, 1993, pp. 1753-1758.
  24. T. Abhilash, A.P. Pavani, Multi area load frequency control of power system involving renewable and non-renewable energy sources, in: Power Adv. Comput. Technol. (I-PACT), 2017 Innov, IEEE, 2017, pp. 1-5.
  25. P. Cominos, N. Munro, PID controllers: recent tuning methods and design to specification, IEE Proceedings-Control Theory Appl. 149 (2002) 46-53. https://doi.org/10.1049/ip-cta:20020103
  26. G.R. Ansarifar, M. Rafiei, Higher order sliding mode controller design for a research nuclear reactor considering the effect of xenon concentration during load following operation, Ann. Nucl. Energy 75 (2015) 728-735. https://doi.org/10.1016/j.anucene.2014.09.021
  27. J. Kennedy, Particle swarm optimization, in: Encycl. Mach. Learn., Springer, 2011, pp. 760-766.
  28. M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6 (2002) 58-73. https://doi.org/10.1109/4235.985692
  29. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell. 1 (2007) 33-57. https://doi.org/10.1007/s11721-007-0002-0

Cited by

  1. Design and Verification of Reactor Power Control Based on Stepped Dynamic Matrix Controller vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4973120
  2. Optimal feed-water level control for steam generator in nuclear power plant based on meta-heuristic optimization vol.13, pp.1, 2018, https://doi.org/10.1080/16878507.2020.1748350
  3. Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model vol.53, pp.2, 2018, https://doi.org/10.1016/j.net.2020.07.026
  4. A modeling error compensation approach for the feedback control of the nuclear reactor operation vol.382, pp.None, 2018, https://doi.org/10.1016/j.nucengdes.2021.111394
  5. Intelligent Control for Pressurizer System in Nuclear Power Plants vol.2128, pp.1, 2021, https://doi.org/10.1088/1742-6596/2128/1/012022
  6. A literature survey on load frequency control considering renewable energy integration in power system: Recent trends and future prospects vol.45, pp.None, 2018, https://doi.org/10.1016/j.est.2021.103717
  7. A fuzzy-PID series feedback self-tuned adaptive control of reactor power using nonlinear multipoint kinetic model under reference tracking and disturbance rejection vol.166, pp.None, 2018, https://doi.org/10.1016/j.anucene.2021.108696
  8. Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques vol.241, pp.None, 2018, https://doi.org/10.1016/j.energy.2021.122836