DOI QR코드

DOI QR Code

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses

황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교

  • Park, Kyoung Sub (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kwon, Dae Young (Cheong-ju Agricultural Technology Center) ;
  • Lee, Joon Woo (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 박경섭 (국립원예특작과학원 시설원예연구소) ;
  • 권대영 (청주농업기술센터) ;
  • 이준우 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Received : 2018.10.02
  • Accepted : 2018.10.12
  • Published : 2018.10.30

Abstract

Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

인공광을 이용한 보광은 시설재배에서 작물의 정상적인 생육과 수확량을 유지하고 품질 향상을 위하여 사용되는 실용적인 방법이다. 본 연구의 목적은 황 플라스마 램프(SP)와 고압 나트륨 램프(HPS)의 보광이 파프리카의 생육 및 수확량에 미치는 영향을 조사하는 것이다. 생장상에서는 SP 및 HPS를 기본 광원으로, 온실에서는 보광으로 사용하여 작물 생육에 미치는 효과를 비교 분석하였다. 생장상에서는 정식 2 주 후 SP와 HPS 하에서 초장, 엽면적, 줄기 직경, 엽수, 생체중 및 건물중을 매주 측정 하였다. 온실재배에서는 무보광을 대조구로 하였다. 보광은 07:00부터 21:00까지 외부일사 $100W{\cdot}m^{-2}$ 미만일 때 처리되도록 하였다. 보광 처리 후 3주부터 매주 생육량을 측정하였고, 2주 마다 수확하여 과실수와 과실무게를 측정하였다. 생장상에서는 높은 광합성속도로 인하여 SP가 HPS보다 생육이 양호하였고, 온실에서는 보광처리가 대조구보다 수확량이 유의적으로 높았다. 온실에서의 초장, 마디수, 엽장, 생체중, 건물중은 SP와 HPS 간의 유의적인 차이는 없었다. 그러나 수확 시 과실수와 수량은 광합성 증진과 및 과실수의 증가로 인하여 SP에서 많았다. SP는 태양광과 유사한 광 스펙트럼을 보였으나, HPS와 비교하여 높은 PAR과 적색과 원적색 파장의 광양자속의 합이 높았기 때문에 파프리카의 광합성과 수확량을 증가시켰다.

Keywords

References

  1. Aiste, B., B. Ausra, V. Akvile, S. Giedre, J. Jule, S. Ramunas, S. Sandra, M. Jurga, and M. Nijole. 2015. Cultivation of sweet pepper (Capsicum annuum L.) transplants under high pressure sodium lamps supplemented by light-emitting diodes of various wavelengths. Acta Sci. Pol. Hortorum Cultus 14:3-14.
  2. Amoozgar, A., A. Mohammadi, and M.R. Sabzalian. 2017. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55:85-95. https://doi.org/10.1007/s11099-016-0216-8
  3. Cocetta, G., D. Casciani, R. Bulgari, F. Musante, A. Kolton, M. Rossi, and A. Ferrante. 2017. Light use efficiency for vegetables production in protected and indoor environments. Eur. Phys. J. Plus. 132:43. https://doi.org/10.1140/epjp/i2017-11298-x
  4. Demers, D.A., M. Dorais, C.H. Wien, and A. Gosselin. 1998. Effects of supplemental light duration on greenhouse tomato plants and fruit yields. Sci. Hortic. 74:295-306. https://doi.org/10.1016/S0304-4238(98)00097-1
  5. de Visser, P.H.B., G.H. Buck-Sorlin, G.W. and van der Heijen. 2014. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front. Plant Sci. 5:48.
  6. Dorais, M., A. Gosseelin, and M.J. Trudel. 1991. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Sci. Hortic. 45: 225-234. https://doi.org/10.1016/0304-4238(91)90067-9
  7. Gomez, C., R.C. Morrow, M. Bourget, G. Massa, and C.A. Michell. 2013. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Hort-Technology 23:93-98.
  8. Guo, X., X. Hao, J.M. Zheng, C. Little, and S. Khosla. 2016a. Effects of plasma vs. high-pressure sodium lamps on plant growth, fruit yield and quality in greenhouse cucumber production. Acta Hortic. 1134:79-86.
  9. Guo, X., X. Hao, J.M. Zheng, C. Little, and S. Khosla. 2016b. Response of greenhouse mini-cucumber to different vertical spectra of LED lighting under overhead high-pressure sodium and plasma lighting. Acta Hortic. 1134:87-94.
  10. Hao, X., C. Little, J.M. Zheng, and R. Cao. 2016. Far-red LEDs improve fruit production in greenhouse tomato grown under high-pressure sodium lighting. Acta Hortic. 1134:95-102.
  11. Hao, X. and A.P. Papadopoulos. 1999. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Sci. Hortic. 80:1-18. https://doi.org/10.1016/S0304-4238(98)00217-9
  12. Hernandez, R. and C. Kubota. 2014. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 173:92-99. https://doi.org/10.1016/j.scienta.2014.04.035
  13. Hikosaka, S., S. Iyoki, M. Hayakumo, and E. Goto. 2013. Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions. J. Agric. Meteorol. 69: 93-100. https://doi.org/10.2480/agrmet.69.2.5
  14. Heuvelink, E. and O. Korner. 2001. Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann. Bot. 88:69-74. https://doi.org/10.1006/anbo.2001.1427
  15. Hogewoning, S.W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbinson. 2010a. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61:1267-1276. https://doi.org/10.1093/jxb/erq005
  16. Hogewoning, S.W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbinson. 2010b. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativas grown under different combinations of red and blue light. J. Exp. Bot. 61:3107-3117. https://doi.org/10.1093/jxb/erq132
  17. Hogewoning, S.W., G. Trouwborst, E. Meinen, and W. van Ieperen. 2012. Finding the optimal growth-light spectrum for greenhouse crops. Acta Hortic. 956:357-364.
  18. Hovi, T., J. Nakkila, R. Tahvonen. 2004. Interlighting improves production of year-round cucumber. Sci. Hortic. 102:283-294. https://doi.org/10.1016/j.scienta.2004.04.003
  19. Jeong, W.J., J.H. Lee, H.C. Kim, and J.H. Bae. 2009a. Dry matter production, distribution and yield of sweet pepper grown under glasshouse and plastic greenhouse in Korea. J. Bio-environ. Cont. 18:255-265 (in Korean).
  20. Jeong, W.J., D.J. Myung, and J.H. Lee. 2009b. Comparison of climatic conditions of sweet pepper's greenhouse between Korea and the Netherlands. J. Bio-environ. Cont. 18:244-252 (in Korean).
  21. Kim, E.J., S.H. Lee, and J.H. Lee. 2013. Effects of the high pressure sodium lamp lighting on the dynamics of growth and dry mass partitioning in sweet pepper plant. Korean J. Hortic. Sci. Technol. 31:565-572 (in Korean). https://doi.org/10.7235/hort.2013.13037
  22. Kim, Y.B., J.H. Bae, and M.H. Park. 2011. Effects of supplemental lighting on growth and yield of sweet pepper (Capsicum annuum L.) in hydroponic culture under low levels of natural light in winter. Korean J. Hortic. Sci. Technol. 29:317-325 (in Korean).
  23. Kinoshita, T., M. Doi, N. Suetsugu, T. Kagawa, M. Wada, and K. Shimazaki. 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 665-660.
  24. Lee, J.W., H.C. Kim, P.H. Jeong, Y.G. Ku, and J.H. Bae. 2014. Effects of supplemental lighting of high-pressure sodium and lighting emitting plasma on growth and productivity of paprika during low radiation period of winter season. Korean J. Hortic. Sci. Technol. 32:346-352 (in Korean). https://doi.org/10.7235/hort.2014.14029
  25. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  26. Mcavoy, R.J., H.W. Janes, B.L. Godfriaux, M. Secks, D. Duchai, and W.K. Wittman. 1989. The effect of total available photosynthetic photon flux on single truss tomato growth and production. J. Hortic. Sci. 64:331-338. https://doi.org/10.1080/14620316.1989.11515961
  27. Myers, J. 1971. Enhancement studies in photosynthesis. Ann. Rev. Plant Physiol. 22:289-312. https://doi.org/10.1146/annurev.pp.22.060171.001445
  28. Paul, F.D. 2016. Plants wait for the lights to change to red. PNAS. 113:7301-7303. https://doi.org/10.1073/pnas.1608237113
  29. Pepin, S., E. Fontier, S.A. Bechard-Dube, M. Dorais, C. Menard, and R. Bacon. 2014. Beneficial effects of using a 3-D LED interligting system for organic. Acta Hortic. 1041:239-246.
  30. Pettersen, R.I., S. Torre, and H.R. Gislerod. 2010. Effects of intracanopy lighting on photosynthetic characteristics in cucumber. Sci. Hortic. 125:77-81. https://doi.org/10.1016/j.scienta.2010.02.006
  31. Sage, R.F. and T.D. Sharkey. 1987. The effect of temperature on the occurrence of $O_2$ and $CO_2$ insensitive photosynthesis in field grown plants. Plant Physiol. 84:658-664. https://doi.org/10.1104/pp.84.3.658
  32. Sage, R.F., T.D. Sharkey, and J.R. Seemann. 1989. Acclimation of photosynthesis to elevated $CO_2$ in five C3 species. Plant Physiol. 89:590-596. https://doi.org/10.1104/pp.89.2.590
  33. Sharkey, T.D., C.J. Bernacchi, G.D. Farquar, and E.L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30:1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  34. Smith, H. 1982. Light quality, photoperception, and plant strategy. Ann. Rev. Plant Physiol. 33:481-518. https://doi.org/10.1146/annurev.pp.33.060182.002405
  35. Trouwborst, G., J. Oosterkamp, S.W. Hogewoning, J. Harbinson. 2009. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Planta 138:289-300.
  36. von Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387. https://doi.org/10.1007/BF00384257
  37. Yang, L.Y., L.T. Wang, J.H. Ma, E.D. Ma, J.Y. Li, and M. Gong. 2017. Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica 55:467-477. https://doi.org/10.1007/s11099-016-0668-x