DOI QR코드

DOI QR Code

Evaluation of Individual Glucosinolates, Phytochemical Contents, and Antioxidant Activities under Various Red to Far-Red Light Ratios in Three Brassica Sprouts

적색/원적색광 조사 비율에 따른 3종 배추과 채소 새싹의 Glucosinolate 함량 및 항산화 기능성 평가

  • Jo, Jung Su (Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Lee, Jun Gu (Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University)
  • Received : 2018.07.30
  • Accepted : 2018.10.25
  • Published : 2018.10.30

Abstract

The aim of this study was to evaluate the individual glucosinolate (GSL), total phenol, total flavonoid, and vitamin C content, and antioxidant activity under various light quality condition, mainly focusing on red (R) to far-red (FR) light ratios in three Brassica sprouts (radish, Chinese cabbage, and broccoli). Three R/FR ratio of 0.6, 1.3, and 2.0 were exposed to 5-day old sprouts for 48 h in a controlled environment, and the targeted phytochemical contents and antioxidant activities were compared with three separate control plot of dark, fluorescent, and red:blue 8:2 conditions. Total GSL content was highest in broccoli among the cultivars throughout the respective treatments, and increased with the increasing of R/FR ratio in the broccoli sprouts, while the content showed non-significant results in the Chinese cabbage sprouts. The progoitrin, a major GSL in Chinese Cabbage and broccoli, content decreased by upto 38% and 69%, respectively, with decreasing the R/FR ratio compared to the control plots (fluorescent, red:blue 8:2, and dark condition). The contents of phenol, flavonoid, and vitamin C were lowest in dark condition in all the three Brassica sprouts. The total phenol content and antioxidant activities increased with decreasing the R/FR ratio in all the Brassica sprouts, while total flavonoid and vitamin C content showed different patterns depending upon the Brassica sprouts. These results suggest that additional use of FR is expected to improve the functional quality of Brassica sprouts in different ways.

본 연구의 목적은 3가지의 배추과 작물의 새싹에서 적색(R)과 원적외선(FR)광에 초점을 맞추어서 glucosinolate(GSL), 총 페놀, 총 플라보노이드, 비타민 C 함량, 항산화 활성을 평가하는 것이다. 제한된 환경조건에서 5일된 새싹에 3가지의 R/FR비율을 2일동안 24시간 노출시켜 식물화학물질과 항산화활성을 대조군[형광등, R:B(8:2), 암조건]과 비교하였다. 총 GSL 함량은 각 처리 기간 동안 3가지의 작물 중 브로콜리에서 가장 높았으며, 브로콜리 새싹에서 R/FR 비율이 증가함에 따라 총 GSL 함량이 감소하는 반면 배추와 무의 새싹에서는 유의하지 않은 결과를 보여주었다. 배추 및 브로콜리의 주요 GSL인 progointrin은 대조군에 비해 R/FR 비율이 감소함에 따라 최대 38%, 69%까지 감소하였다. 3가지 배추과 새싹에서 페놀, 플라보노이드 및 비타민 C의 함량 모두 암조건에서 가장 낮았다. 총 페놀 및 항산화 활성은 3가지 배추과 새싹에서 R/FR 비율이 감소할수록 증가하는 반면, 총 플라보노이드와 비타민 C 함량은 작물 간 다른 양상을 보였다. 이러한 결과는 FR의 보광에 따라 배추과 새싹의 기능적 품질을 향상시킬 것으로 기대된다.

Keywords

References

  1. Bhandari S.R. and J.H. Kwak. 2014. Seasonal variation in phytochemicals and antioxidant activities in different tissues of various broccoli cultivars. Afr. J. Biotechnol. 13:604-615. https://doi.org/10.5897/AJB2013.13432
  2. Bhandari S.R. and J.H. Kwak. 2015. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228-1243. https://doi.org/10.3390/molecules20011228
  3. Bhandari, S.R., J.S. Jo, and J.G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. https://doi.org/10.3390/molecules200915827
  4. Boccalandro, H.E., M.L. Rugnone, J.E. Moreno, E.L. Ploschuk, L. Serna, M.J. Yanovsky, and J.J. Casal. 2009. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol. 150:1083-1092. https://doi.org/10.1104/pp.109.135509
  5. Carvalho, S.D. and K.M. Folta. 2014. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Horticulture research, 1, 8. https://doi.org/10.1038/hortres.2014.8
  6. Cargnel, M. D., Demkura, P. V., & Ballare, C. L. 2014. Linking phytochrome to plant immunity: low red: far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytologist, 204, 342-354. https://doi.org/10.1111/nph.13032
  7. Clarke, D.B. 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310-325. https://doi.org/10.1039/b9ay00280d
  8. Deng, M, H, Qian, L, Chen, Bo Sun, Jiaqi Chang, Huiying Miao, Congxi Cai, Qiaomei Wang. 2017. Influence of preharvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts. Food Chem. 222:1-5. https://doi.org/10.1016/j.foodchem.2016.11.157
  9. Finlayson, S.A., S.R. Krishnareddy, T.H. Kebrom, and J.J. Casal. 2010. Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152:914-1927.
  10. Giliberto, L., G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. Tavazza, G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137:199-208. https://doi.org/10.1104/pp.104.051987
  11. Goto, E. 2012. Plant production in a closed plant factory with artificial light. Acta Hortic. 956:37-49.
  12. Heo, J.W., D.E. Kim, K.S. Han, and S.J. Kim. 2013. Effect of light-quality control on growth of Ledebouriella seseloides grown in plant factory of an artificial light type. Kor. J. Environ. Agric. 32:193-200. https://doi.org/10.5338/KJEA.2013.32.3.193
  13. Huseby. S., A. Koprivova1, B.R. Lee1, S. Saha, R. Mithen, A.B. Wold, G.B. Bengtsson and S. Kopriva. 2013 Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot. 64:1039-1048. https://doi.org/10.1093/jxb/ers378
  14. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Ann. Rev. Plant Biol. 57:303-338. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  15. Harborme, J. B. and C.A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  16. Holmes, M.G. and H. Smith. 1977a. Function of phytochrome in natural environment 1. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochem. Photobiol. 25:533-538. https://doi.org/10.1111/j.1751-1097.1977.tb09124.x
  17. Holmes, M.G. and H. Smith. 1977b. The function of phytochrome in natural environment 4. Light quality and plant development. Photochem. Photobiol. 25:551-557. https://doi.org/10.1111/j.1751-1097.1977.tb09127.x
  18. Hertel, C., M. Leuchner, and A. Menzel. 2011. Vertical variability of spectral ratios in a mature mixed forest stand. Agric. For. Meteorol. 151:1096-1105. https://doi.org/10.1016/j.agrformet.2011.03.013
  19. Jeong, E.J., J.W. Kim, and Y.C. Kim. 2008. Rhus verniciflua stokes attenuates glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat. Prod. Sci. 14:156-160.
  20. Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2010. Blue lightemitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. https://doi.org/10.21273/HORTSCI.45.12.1809
  21. Jo, J.S., S.R. Bhandari, G.H. Kang, and J.G. Lee. 2016. Comparative Analaysis of Individual Glucosinolates, Phytochemicals, and Antioxidant Activities in Broccoli Breeding Lines. Hortic. Environ, Biotechnol. 57(4):392-403. https://doi.org/10.1007/s13580-016-0088-7
  22. Kozai, T. 2013. Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hort. 1004:27-40.
  23. Lee. M.J., K.H. Son, and M.M. Oh. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 57:139-147. https://doi.org/10.1007/s13580-016-0133-6
  24. Lee. M.J., S.Y. Park, and M.M. Oh. 2015. Growth and cell division of lettuce plants under various ratios of red to farred light-emitting diodes. Hort. Environ. Biotechnol. 56:186-194. https://doi.org/10.1007/s13580-015-0130-1
  25. Liu, Z., A. H. Hirani, P. B. McVetty, F. Daayf, C. F. Quiros, and G. Li. 2012. 'Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family.' Plant Mol. Biol. 79:179-189. https://doi.org/10.1007/s11103-012-9905-2
  26. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. Hort-Science 43:1951-1956. https://doi.org/10.21273/HORTSCI.43.7.1951
  27. Menichini F, R. Tundis, M. Bonesi, M.R. Loizzo, F. Conforti, G. Statti, B. De Cindio, P.J. Houghton, and F. Menichini. 2009. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. Cv Habanero. Food Chem. 114:553-560 https://doi.org/10.1016/j.foodchem.2008.09.086
  28. Mithen, R. F. 2001. 'Glucosinolates and their degradation products.' Advances in Botanical Research 35:213-232.
  29. Morrow, R.C. 2008. LED lighting in horticulture. Hort-Science 43:1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  30. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hortic. 122:134-137. https://doi.org/10.1016/j.scienta.2009.03.010
  31. Oh, K.W., C.k. Lee, Y.S Kim, S.K. Eo, and S.S. Han. 2000. Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with acyclovir and vidarabine. J. Ethnopharmacol. 72:221-227. https://doi.org/10.1016/S0378-8741(00)00254-3
  32. Park, S.H., H.S. Hwang, and J.H. Han. 2004. Development of drink from composition with medicinal plants and evaluation of its physiological function. Korean J. Nutr. 37:364-372.
  33. Qian H, T. Liu, M. Deng, H. Miao, C. Cai, W. Shen, and Q. Wang. 2016. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem. 196:1232-1238. https://doi.org/10.1016/j.foodchem.2015.10.055
  34. Reed, J.W., P. Nagpal, D.S. Poole, M. Furuya, and J. Chory. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell Online 5:147-157.
  35. Salisbury, F.J., A. Hall, C.S. Grierson, and K.J. Halliday. 2007. Phytochrome coordinates Arabidopsis shoot and root development. Plant J. 50:429-438. https://doi.org/10.1111/j.1365-313X.2007.03059.x
  36. Sasidharan, R., C.C. Chinnappa, M. Staal, J.T.M. Elzenga, R. Yokoyama, K. Nishitani, L. Voesenek, and R. Pierik. 2010. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by Xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 154:978-990. https://doi.org/10.1104/pp.110.162057
  37. Singleton V.L. and J.A. Rossi Jr. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Amer. J. Enol. Viticult. 16:144-158.
  38. Son. K.H., J.H. Park, D.I. Kim, M.M. Oh. 2012. Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes. Korean J. Hortic. Sci. Technol. 30:664-672. https://doi.org/10.7235/hort.2012.12063
  39. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. https://doi.org/10.21273/HORTSCI.48.8.988
  40. Steindal. A.L.H., J. Molmann, G.B. Bengtsson, and T.J. Johansen. 2013. Influence of day length and temperature on the Content of Health-Related Compounds in Broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 61:10779-10786. https://doi.org/10.1021/jf403466r
  41. Taiz, L. and E. Zeiger. 1991. Plant physiology. 1 st ed., Benjamin/Cummings Publishing Co. New York.
  42. Thaipong K, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D.H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19:669-675. https://doi.org/10.1016/j.jfca.2006.01.003
  43. Tsormpatsidis, E., R.G.C. Henbest, F.J. Davis, N.H. Battey, P. Hadley, and A. Wagstaffe. 2008. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films. Environ. Exp. Bot. 63:232-239. https://doi.org/10.1016/j.envexpbot.2007.12.002
  44. Turnbull, M.H. and D.J. Yates. 1993. Seasonal variation in the red/far-red ratio and photon flux density in an Australian subtropical rain-forest. Agric. For. Meteorol. 64:111-127. https://doi.org/10.1016/0168-1923(93)90096-Z
  45. Vale. A.P., J. Santos, N.V. Brito, D. Fernandes, E. Rosa, M. Beatriz, and P.P. Oliveira. 2015. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry 115:252-260. https://doi.org/10.1016/j.phytochem.2015.02.004
  46. Wheeler R.M. 2008. A historical background of plant lighting: an introduction to the workshop. HortScience 43:1942-1943.3-342. https://doi.org/10.21273/HORTSCI.43.7.1942
  47. Yeh, N. and J.P. Chung. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sust. Energy Rev. 13:2175-2180. https://doi.org/10.1016/j.rser.2009.01.027