DOI QR코드

DOI QR Code

Hepatitis E Virus Papain-Like Cysteine Protease Inhibits Type I Interferon Induction by Down-Regulating Melanoma Differentiation-Associated Gene 5

  • Kim, Eunha (Korea Zoonosis Research Institute & Genetic Engineering Research Institute, Chonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute & Genetic Engineering Research Institute, Chonbuk National University)
  • Received : 2018.09.17
  • Accepted : 2018.10.08
  • Published : 2018.11.28

Abstract

Upon viral infection, the host cell recognizes the invasion through a number of pattern recognition receptors. Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) recognize RNA molecules derived from invading viruses, activating down-stream signaling cascades, culminating in the induction of the type I interferon. On the other hand, viruses have evolved to evade type I interferon-mediated inhibition. Hepatitis E virus has been shown to encode a few antagonists of type I interferon and it is not surprising that viruses encode multiple mechanisms of viral evasion. In the present study, we demonstrated that HEV PCP strongly down-regulates MDA5-mediated activation of interferon ${\beta}$ induction in a dose-dependent manner. Interestingly, MDA5 protein expression was almost completely abolished. In addition, polyinosinic polycytidylic acid (poly(I:C))- and Sendai virus-mediated activation of type I interferon responses were similarly abrogated in the presence of HEV PCP. Furthermore, HEV PCP down-regulates several molecules that play critical roles in the induction of type I IFN expression. Taken together, these data collectively suggest that HEV-encoded PCP is a strong antagonist of type I interferon.

Keywords

References

  1. Forni D, Cagliani R, Clerici M, Sironi M. 2018. Origin and dispersal of Hepatitis E virus. Emerg. Microbes Infect. 7: 11.
  2. Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE, et al. 1991. Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185: 120-131. https://doi.org/10.1016/0042-6822(91)90760-9
  3. Kang S, Myoung J. 2017. Host innate immunity against Hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  4. Kumar S, Subhadra S, Singh B, Panda BK. 2013. Hepatitis E virus: the current scenario. Int. J. Infect. Dis. 17: e228-233. https://doi.org/10.1016/j.ijid.2012.11.026
  5. Krawczynski K. 1993. Hepatitis E. Hepatology 17: 932-941. https://doi.org/10.1002/hep.1840170525
  6. Wong DC, Purcell RH, Sreenivasan MA, Prasad SR, Pavri KM. 1980. Epidemic and endemic hepatitis in India: evidence for a non-A, non-B hepatitis virus aetiology. Lancet 2: 876-879.
  7. Khuroo MS. 1980. Study of an epidemic of non-A, non-B hepatitis. Possibility of another human hepatitis virus distinct from post-transfusion non-A, non-B type. Am. J. Med. 68: 818-824. https://doi.org/10.1016/0002-9343(80)90200-4
  8. Reyes GR, Purdy MA, Kim JP, Luk KC, Young LM, Fry KE, et al. 1 990. Isolation o f a cDNA f rom the virus responsible for enterically transmitted non-A, non-B hepatitis. Science 247: 1335-1339. https://doi.org/10.1126/science.2107574
  9. Jilani N, Das BC, Husain SA, Baweja UK, Chattopadhya D, Gupta RK, et al. 2007. Hepatitis E virus i nf ection and fulminant hepatic failure during pregnancy. J. Gastroenterol. Hepatol. 22: 676-682. https://doi.org/10.1111/j.1440-1746.2007.04913.x
  10. Navaneethan U, Al Mohajer M, Shata MT. 2008. Hepatitis E and pregnancy: understanding the pathogenesis. Liver Int. 28: 1190-1199. https://doi.org/10.1111/j.1478-3231.2008.01840.x
  11. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. 2005. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23: 307-336. https://doi.org/10.1146/annurev.immunol.23.021704.115843
  12. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. 2015. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15: 405-414. https://doi.org/10.1038/nri3845
  13. Kim N, Now H, Nguyen NTH, Yoo JY. 2016. Multilayered regulations of RIG-I in the anti-viral signaling pathway. J. Microbiol. 54: 583-587. https://doi.org/10.1007/s12275-016-6322-2
  14. Schmidt ME, Varga SM. 2017. Modulation of the host immune response by respiratory syncytial virus proteins. J. Microbiol. 55: 161-171. https://doi.org/10.1007/s12275-017-7045-8
  15. Draenert R, Frater J, Prado JG. 2012. Virus immune evasion: new mechanism and implications in disease outcome. Adv. Virol. 2012: 490549.
  16. Senba M, Mori N. 2012. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol Rev. 6(2): e17. https://doi.org/10.4081/oncol.2012.e17
  17. Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, et al. 2016. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 54: 853-866. https://doi.org/10.1007/s12275-016-6376-1
  18. Kang S, Choi C, Choi I, Han KN, Roh SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. doi: 10.4014/jmb.1808.08058 [Epub ahead of print]
  19. Nan Y, Yu Y, Ma Z, Khattar SK, Fredericksen B, Zhang YJ. 2014. Hepatitis E virus inhibits type I interferon induction by ORF1 products. J. Virol. 88: 11924-11932. https://doi.org/10.1128/JVI.01935-14
  20. Surjit M, Varshney B, Lal SK. 2012. The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-kappaB activity by blocking ubiquitination mediated proteasomal degradation of IkappaBalpha in human hepatoma cells. BMC Biochem. 13: 7. https://doi.org/10.1186/1471-2091-13-7
  21. He M, Wang M, Huang Y, Peng W, Zheng Z, Xia N, et al. 2016. The ORF3 protein of genotype 1 Hepatitis E virus suppresses TLR3-induced NF-kappaB signaling via TRADD and RIP1. Sci. Rep. 6: 27597. https://doi.org/10.1038/srep27597
  22. Choi S, Park H, Minelko M, Kim EK, Cho MR, Nam JH. 2017. Recombinant adeno-associated virus expressing truncated IK cytokine diminishes the symptoms of inflammatory arthritis. J. Microbiol. Biotechnol. 27: 1892-1895. https://doi.org/10.4014/jmb.1705.05018
  23. Hamid FB, Kim J, Shin CG. 2017. Characterization of prototype foamy virus infectivity in transportin 3 knockdown human 293t cell line. J. Microbiol. Biotechnol. 27: 380-387. https://doi.org/10.4014/jmb.1606.06011
  24. Lee JM, Cho JB, Ahn HC, Jung W, Jeong YJ. 2017. A novel chemical compound for inhibition of SARS coronavirus helicase. J. Microbiol. Biotechnol. 27: 2070-2073. https://doi.org/10.4014/jmb.1707.07073
  25. Liu X, Dong Y, Wang J, Li L, Zhong Z, Li YP, et al. 2017. VSV-G viral envelope glycoprotein prepared from Pichia pastoris enhances transfection of DNA into animal cells. J Microbiol Biotechnol. 27: 1098-1105.
  26. Ahn HS, Han SH, Kim YH, Park BJ, Kim DH, Lee JB, et al. 2017. Adverse fetal outcomes in pregnant rabbits experimentally infected with rabbit hepatitis E virus. Virology 512: 187-193. https://doi.org/10.1016/j.virol.2017.09.020
  27. Cho M, Myoung J. 2015. OX40 and 4-1BB downregulate Kaposi's sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells. J. Gen. Virol. 96: 3635-3645. https://doi.org/10.1099/jgv.0.000312
  28. Fu B, Kuang E, Li W, Avey D, Li X, Turpin Z, et al. 2015. Activation of p90 ribosomal S6 kinases by ORF45 of Kaposi's sarcoma-associated herpesvirus is critical for optimal production of infectious viruses. J. Virol. 89: 195-207. https://doi.org/10.1128/JVI.01937-14
  29. Gillen J, Li W, Liang Q, Avey D, Wu J, Wu F, et al. 2015. A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses. J. Virol. 89: 4918-4931. https://doi.org/10.1128/JVI.02925-14
  30. Ha S, Choi IS, Choi C, Myoung J. 2016. Infection models of human norovirus: challenges and recent progress. Arch. Virol. 161: 779-788. https://doi.org/10.1007/s00705-016-2748-4
  31. Kang HS, Myoung J, So EY, Bahk YY, Kim BS. 2016. Transgenic expression of non-structural genes of Theiler's virus suppresses initial viral replication and pathogenesis of demyelination. J. Neuroinflammation 13: 133. https://doi.org/10.1186/s12974-016-0597-4
  32. Lee M, Seo DJ, Seo J, Oh H, Jeon SB, Ha SD, et al. 2015. Detection of viable murine norovirus using the plaque assay and propidium-monoazide-combined real-time reverse transcription-polymerase chain reaction. J. Virol. Methods 221: 57-61. https://doi.org/10.1016/j.jviromet.2015.04.018
  33. Karpe YA, Lole KS. 2011. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. J. Gen. Virol. 92: 2088-2092. https://doi.org/10.1099/vir.0.033738-0
  34. Oshiumi H, Miyashita M, Matsumoto M, Seya T. 2013. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9: e1003533. https://doi.org/10.1371/journal.ppat.1003533
  35. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  36. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  37. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826. https://doi.org/10.1038/nature06246
  38. Lee BH, Chathuranga K, Uddin MB, Weeratunga P, Kim MS, Cho WK, et al. 2017. Coptidis Rhizoma extract inhibits replication of respiratory syncytial virus in vitro and in vivo by inducing antiviral state. J. Microbiol. 55: 488-498. https://doi.org/10.1007/s12275-017-7088-x
  39. Seong RK, Choi YK, Shin OS. 2016. MDA7/IL-24 is an antiviral factor that inhibits influenza virus replication. J. Microbiol. 54: 695-700. https://doi.org/10.1007/s12275-016-6383-2
  40. Lai HC, Horng YT, Yeh PF, Wang JY, Shu CC, Lu CC, et al. 2016. The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis. J. Microbiol. 54: 761-767. https://doi.org/10.1007/s12275-016-6201-x
  41. Weeratunga P, Uddin MB, Kim MS, Lee BH, Kim TH, Yoon JE, et al. 2016. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J. Microbiol. 54: 57-70. https://doi.org/10.1007/s12275-016-5555-4
  42. Weeratunga P, Herath TUB, Kim TH, Lee HC, Kim JH, Lee BH, et al. 2017. Dense Granule Protein-7 (GRA-7) of Toxoplasma gondii inhibits viral replication in vitro and in vivo. J. Microbiol. 55: 909-917. https://doi.org/10.1007/s12275-017-7392-5
  43. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82: 335-345. https://doi.org/10.1128/JVI.01080-07
  44. Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. https://doi.org/10.1016/j.cell.2010.01.022
  45. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6: 981-988. https://doi.org/10.1038/ni1243
  46. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172. https://doi.org/10.1038/nature04193
  47. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682. https://doi.org/10.1016/j.cell.2005.08.012
  48. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, et al. 2002. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76: 5532-5539. https://doi.org/10.1128/JVI.76.11.5532-5539.2002
  49. Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349-360. https://doi.org/10.1016/j.immuni.2006.08.009
  50. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347: aaa2630. https://doi.org/10.1126/science.aaa2630

Cited by

  1. Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and -II Protein Complex vol.29, pp.4, 2019, https://doi.org/10.4014/jmb.1901.01067
  2. Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1909.09017
  3. Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly Antagonize the Interferon-β Signaling Pathway vol.29, pp.11, 2018, https://doi.org/10.4014/jmb.1910.10014
  4. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway vol.57, pp.12, 2019, https://doi.org/10.1007/s12275-019-9478-8
  5. Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1911.11024
  6. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations vol.13, pp.10, 2018, https://doi.org/10.3390/ph13100277
  7. Vertical transmission of hepatitis E virus in pregnant rhesus macaques vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74461-7
  8. Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2012.12005
  9. Characterization of a Cell Culture System of Persistent Hepatitis E Virus Infection in the Human HepaRG Hepatic Cell Line vol.13, pp.3, 2018, https://doi.org/10.3390/v13030406
  10. Induction of immunocontraceptive effects in both male and female mice immunized with GnRH vaccine vol.7, pp.5, 2018, https://doi.org/10.1002/vms3.563
  11. Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179259