Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

  • Kim, You-Kyoung (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • An, Yin-Zhe (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Cha, Jae-Kook (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
  • Received : 2018.07.25
  • Accepted : 2018.08.27
  • Published : 2018.11.30

Abstract

Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% ${\beta}$-tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks ($27.12{\pm}3.99$ versus $21.97{\pm}2.27mm^2$) and 8 weeks ($25.75{\pm}1.82$ versus $22.48{\pm}1.10mm^2$) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000 2003;33:36-53. https://doi.org/10.1046/j.0906-6713.2003.03304.x
  2. Thoma DS, Halg GA, Dard MM, Seibl R, Hammerle CH, Jung RE. Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res 2009;20:7-16. https://doi.org/10.1111/j.1600-0501.2008.01604.x
  3. Simion M, Baldoni M, Rossi P, Zaffe D. A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period. Int J Periodontics Restorative Dent 1994;14:166-80.
  4. Aaboe M, Pinholt EM, Schou S, Hjorting-Hansen E. Incomplete bone regeneration of rabbit calvarial defects using different membranes. Clin Oral Implants Res 1998;9:313-20. https://doi.org/10.1034/j.1600-0501.1998.090504.x
  5. Selvig KA, Kersten BG, Chamberlain ADH, Wikesjo UME, Nilveus RE. Regenerative Surgery of Intrabony Periodontal Defects Using Eptfe Barrier Membranes - Scanning Electron-Microscopic Evaluation of Retrieved Membranes Versus Clinical Healing. J Periodontol 1992;63:974-8. https://doi.org/10.1902/jop.1992.63.12.974
  6. Tempro PJ, Nalbandian J. Colonization of Retrieved Polytetrafluoroethylene Membranes - Morphological and Microbiological Observations. J Periodontol 1993;64:162-8. https://doi.org/10.1902/jop.1993.64.3.162
  7. Yukna CN, Yukna RA. Multi-center evaluation of bioabsorbable collagen membrane for guided tissue regeneration in human Class II furcations. J Periodontol 1996;67:650-7. https://doi.org/10.1902/jop.1996.67.7.650
  8. Mattson JS, Gallagher SJ, Jabro MH. The use of 2 bioabsorbable barrier membranes in the treatment of interproximal intrabony periodontal defects. J Periodontol 1999;70:510-7. https://doi.org/10.1902/jop.1999.70.5.510
  9. Silvipriya KS, Krishna Kumar K, Bhat AR, Dinesh Kumar B, Anish John, Panayappan lakshmanan. Collagen: Animal Sources and Biomedical Application. J App Pharm Sci, 2015; 5 (03): 123-127.
  10. Tatakis DN, Promsudthi A, Wikesjo UM. Devices for periodontal regeneration. Periodontol 2000 1999;19:59-73. https://doi.org/10.1111/j.1600-0757.1999.tb00147.x
  11. Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, et al. Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 1989;60:35-43. https://doi.org/10.1902/jop.1989.60.1.35
  12. Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol 2001;72:215-29. https://doi.org/10.1902/jop.2001.72.2.215
  13. Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 2005;16:369-78. https://doi.org/10.1111/j.1600-0501.2005.01108.x
  14. Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 2017;53:1-12. https://doi.org/10.1016/j.actbio.2017.01.076
  15. Erbe EM, Marx JG, Clineff TD, Bellincampi LD. Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 2001;10 Suppl 2:S141-6. https://doi.org/10.1007/s005860100287
  16. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002:81-98.
  17. Lim HC, Song KH, You H, Lee JS, Jung UW, Kim SY, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects. J Periodontal Implant Sci 2015;45:46-55. https://doi.org/10.5051/jpis.2015.45.2.46
  18. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone 1995;17:93S-8S. https://doi.org/10.1016/8756-3282(95)00186-H
  19. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res 1997;37:346-52. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<346::AID-JBM5>3.0.CO;2-L
  20. Jung IH, Lim HC, Lee EU, Lee JS, Jung UW, Choi SH. Comparative analysis of carrier systems for delivering bone morphogenetic proteins. J Periodontal Implant Sci 2015;45:136-44. https://doi.org/10.5051/jpis.2015.45.4.136
  21. Lee CK, Koo KT, Kim TI, Seol YJ, Lee YM, Rhyu IC, et al. Biological effects of a porcine-derived collagen membrane on intrabony defects. J Periodontal Implant Sci 2010;40:232-8. https://doi.org/10.5051/jpis.2010.40.5.232
  22. Buser D, Chappuis V, Kuchler U, Bornstein MM, Wittneben JG, Buser R, et al. Long-term stability of early implant placement with contour augmentation. J Dent Res 2013;92:176S-82S. https://doi.org/10.1177/0022034513504949
  23. Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 2009;90:171-81.
  24. Ramirez-Fernandez M, Calvo-Guirado JL, Delgado-Ruiz RA, Mate-Sanchez del Val JE, Vicente-Ortega V, Meseguer-Olmos L. Bone response to hydroxyapatites with open porosity of animal origin (porcine [OsteoBiol mp3] and bovine [Endobon]): a radiological and histomorphometric study. Clin Oral Implants Res 2011;22:767-73. https://doi.org/10.1111/j.1600-0501.2010.02058.x
  25. Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomater 2008;29:2588-96. https://doi.org/10.1016/j.biomaterials.2008.03.013
  26. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg 2009;38:356-62. https://doi.org/10.1016/j.ijom.2009.02.015
  27. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7. https://doi.org/10.5051/jpis.2010.40.4.180
  28. Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater 2014;102:80-8. https://doi.org/10.1002/jbm.b.32984
  29. Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, et al. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, betatricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater 2012;7:015005. https://doi.org/10.1088/1748-6041/7/1/015005
  30. Zhiyong ZH, K.; Hiroshi, K.; Kenji, K. Osteoinduction with HA/${\beta}$-TCP Ceramics of Different Composition and Porous Structure in Rabbits. Oral Sci Int 2005;2:85-95. https://doi.org/10.1016/S1348-8643(05)80011-4
  31. Lim HC, Kim KT, Lee JS, Jung UW, Choi SH. In Vivo Comparative Investigation of Three Synthetic Graft Materials with Varying Compositions Processed Using Different Methods. Int J Oral Maxillofac Implants 2015;30:1280-6. https://doi.org/10.11607/jomi.3999
  32. Caton JG, DeFuria EL, Polson AM, Nyman S. Periodontal regeneration via selective cell repopulation. J Periodontol 1987;58:546-52. https://doi.org/10.1902/jop.1987.58.8.546
  33. Enea D, Henson F, Kew S, Wardale J, Getgood A, Brooks R, et al. Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties. J Mater Sci Mater Med 2011;22:1569-78. https://doi.org/10.1007/s10856-011-4336-1
  34. Haim T, Ofer M, Avital K, Carolos N. Bioresorbable Collagen Membranes for Guided Bone Regeneration. In: Haim T. Bone regeneration. 1st ed. Israel: InTech; 2012.p111-124
  35. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000;5:40-6. https://doi.org/10.1046/j.1087-0024.2000.00014.x
  36. Kitayama S, Wong LO, Ma L, Hao J, Kasugai S, Lang NP, et al. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane. Clin Oral Implants Res 2016;27:e206-e14. https://doi.org/10.1111/clr.12605