DOI QR코드

DOI QR Code

Occurrence of Bunch Rot Disease Caused by Aspergillus tubingensis on Shine Muscat Grape

Aspergillus tubingensis에 의한 샤인머스켓 포도송이썩음병(가칭)의 발생

  • Kim, Young Soo (Department of Plant Medicals, Andong National University) ;
  • Kwon, Hyeok Tae (Department of Plant Medicals, Andong National University) ;
  • Hong, Seung-Beom (Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jeon, Yongho (Department of Plant Medicals, Andong National University)
  • 김영수 (국립안동대학교 식물의학과) ;
  • 권혁태 (국립안동대학교 식물의학과) ;
  • 홍승범 (국립농업과학원 농업미생물과) ;
  • 전용호 (국립안동대학교 식물의학과)
  • Received : 2019.12.18
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

During the year 2018, the symptoms of bunch rot on Shine Muscat (Vitis vinifera L.) were observed in Kimcheon-si, Gyeongbuk province in Korea. The disease appears on the Shine Muscat as a black rot due to prolific fungal sporulation after it has invaded into the Shine Muscat which look completely empty and dryness. Colonies of these fungi are present on the Shine Muscat skin from fruit setting and increase in amount from early season to harvest, while become peak at ripening stage. To isolate the causal agent, small fragments (2 to 3 mm) of decayed tissue from the lesion margin were placed onto potato dextrose agar (PDA) plates. Fungal colonies on PDA produced dense white aerial mycelium and then covered with dark black conidial heads. These heads were large and radiate, and vesicles were globose (2.12-32.0×2.0-3.1 ㎛). Based on morphological and cultural characteristics, this fungus was identified as Aspergillus tubingensis. To confirm its identity, the internal transcribed spacer, β-tubulin, and RNA polymerase II was sequenced for molecular identification. BLAST search indicated 99% identity with A. tubingensis. The pathogenicity test on healthy grape of Shine Muscat produced bunch rot, as the original symptoms. To select effective fungicides for the control of brunch rot, an in vitro antifungal activity of seven fungicides were evaluated against the growth of A. tubingensis. Five fungicides (dipenoconazole, tebuconazole, metconazole, iminoctadine, and captan) exhibited significantly strong suppression of the mycelial growth of A. tubingensis.

2018년 경북 김천 지역 포도 하우스 재배 농가에서 포도송이가 무르고 마른 포도 과실이 낙과되는 피해가 발생하였다. 병반 표면에는 검갈색의 곰팡이 포자가 형성된 것을 확인할 수 있었으며, 이병과실에서 병원균을 분리하여 균학적 특징 및 염기서열 분석결과 병원균은 Aspergillus tubingensis로 동정하였다. 이 증상의 원인균을 증명하기 위해 이병과실에서 병원균을 분리하여 병원성 검정을 수행한 결과, 고온으로 갈수록 급격히 병이 진전되고 하우스에서 발생한 병징과 일치하였다. 또한, 포도송이 썩음 병원균에 대하여 화학농약 약제의 선발을 통해 병원균의 확산을 막고 예방을 하고자 단제 7종 균사생장 억제 효과 검정을 실시하였다. Dipenoconazole, tebuconazole, metconazole, iminoctadine, captan 5가지의 약제에서 균사생장 억제 효과가 확인되었다. A. tubingensis에 의한 포도송이썩음병(가칭)은 2018년도부터 국내 샤인머스켓 포도에 처음 발생되고 있음을 보고하고, 효과적으로 포도송이썩음병의 발생을 예방할 수 있는 5종의 약제를 보고한다.

Keywords

References

  1. Belli, N., Pardo, E., Marin, S., Farré, G., Ramos, A. J. and Sanchis, V. 2004. Occurrence of ochratoxin A and toxigenic potential of fungal isolates from Spanish grapes. J. Sci. Food Agric. 84: 541-546. https://doi.org/10.1002/jsfa.1658
  2. Choi, I.-Y., You, Y.-J., Choi, J.-S. and Lee, W.-H. 2000. Genetic relationships of internal transcribed spacer (ITS) region on entomopathogenic fungi by RELP. Korean J. Mycol. 28: 112-117.
  3. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
  4. Kim, S.-H., Choi, S.-Y., Lim, Y.-S., Yoon, J.-T. and Choi, B.-S. 2001. Etiological characteristics and chemical control of ripe rot in grape cultivar Campbell Early. Res. Plant Dis. 7: 140-144. (In Korean)
  5. Korea Society of Plant Pathology. 2009. List of Plant Disease in Korea. The Korea Society of Plant Pathology, Seoul, Korea. 210 pp.
  6. Majid, A. H. A, Zahran, Z., Rahim, A. H. A., Ismail, N. A., Rahman, W. A., Zubairi K. S. M. et al. 2015. Morphological and molecular characterization of fungus isolated from tropical bed bugs in Northern Peninsular Malaysia, Cimex hemipterus (Hemiptera: Cimicidae). Asian Pac. J. Trop. Biomed. 5: 707-713. https://doi.org/10.1016/j.apjtb.2015.04.012
  7. Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. 2012. Food, agriculture, forestry and fisheries statistical yearbook. URL http://www.mifaff.go.kr [2 November 2019].
  8. Park, J.-H., Han, K.-S., Han, Y.-K., Lee, J.-S., Kim, D.-H. and Hwang, J.-H. 2009. Sclerotinia shoot rot of grapevine (Vitis spp.) caused by Sclerotinia sclerotiorum in Korea. Res. Plant Dis. 15: 259-261. (In Korean) https://doi.org/10.5423/RPD.2009.15.3.259
  9. Peterson, S. W. and Jurjevic, Z. 2013. Talaromyces columbinus sp. nov., and genealogical concordance analysis in Talaromyces clade 2a. PLoS ONE 8: e78084. https://doi.org/10.1371/journal.pone.0078084
  10. Sage, L., Krivobok, S., Delbos, E., Seigle-Murandi, F. and Creppy, E. E. 2002. Fungal flora and ochratoxin A production in grapes and musts from France. J. Agric. Food Chem. 50: 1306-1311. https://doi.org/10.1021/jf011015z
  11. Simoes, M. F., Santos, C. and Lima, N. 2013. Structural diversity of Aspergillus (Section Nigri) spores. Microsc. Microanal. 19: 1151-1158. https://doi.org/10.1017/S1431927613001712
  12. Somma, S., Perrone, G. and Logrieco, A. F. 2012. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits. Phytopathol. Mediterr. 51: 131-147.
  13. Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G. et al. 2011. New and revisited species in Aspergillus section Nigri. Stud. Mycol. 69: 1-17. https://doi.org/10.3114/sim.2011.69.01
  14. Yun, H.-K., Park, K.-S., Rho, J.-H., Jeong, S.-B. and Kim, W.-C. 2001. Downy mildew resistance of grape cultivars (Vitis spp.) under greenhouse and field condition. Korean J. Hortic. Sci. Technol. 19: 54-59.
  15. Yun, H. K., Park, K. S., Rho, J. H., Kwon, B. O. and Jeong, S. B. 2003. Development of an efficient screening system for anthracnose resistance in grapes. J. Korean Soc. Hortic. Sci. 44: 809-812.
  16. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press Inc., New York, USA.