DOI QR코드

DOI QR Code

A Study on Development of Design Support Tool for Building 3D Printing

건축물 3D 프린팅 설계지원도구 개발에 대한 연구

  • Park, Hyung-Jin (Korea Institute of Civil Engineering and Building Technology Department of Future Technology and Convergence Research) ;
  • Seo, Myoung-Bae (Korea Institute of Civil Engineering and Building Technology Department of Future Technology and Convergence Research) ;
  • Ju, Ki-Beom (Korea Institute of Civil Engineering and Building Technology Department of Future Technology and Convergence Research)
  • 박형진 (한국건설기술연구원 미래융합연구본부) ;
  • 서명배 (한국건설기술연구원 미래융합연구본부) ;
  • 주기범 (한국건설기술연구원 미래융합연구본부)
  • Received : 2019.10.08
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

3D printing technology is changing the paradigm of consumer-oriented design in supplier-oriented mass production. 3D printing technology in construction is expected to be able to replace existing wet methods along with modular construction. Recently, a number of cases of building construction using 3D printing using mortar-based materials have been announced in many regions, including North America, Europe, and Asia. In this study, we developed a design support tool with a slicing function to output 3D modeling for architecture for a 3D printing machine. We analyzed the process and the function of slicing programs that are commercially available. Seven slicing functions required for the architectural field were derived by analyzing cases, expert reviews, and related literature. The derived functions were extended from the slicing functions to develop the design support tools. Detailed algorithms and processes need to be developed for future derived functions.

3D 프린팅 기술은 공급자 중심의 대량 생산에서 수요자 중심의 다양한 디자인을 만족하게 하는 패러다임의 변화를 가져오고 있다. 건축분야 3D 프린팅 기술은 모듈러 건축과 더불어 기존의 습식공법을 대체할 수 있는 새로운 시공방법으로 기대되고 있다. 최근 북미, 유럽, 아시아 등 다수의 국가에서 모르타르 계열의 재료를 활용한 3D 프린팅 건축물 구축 사례가 경쟁적으로 발표되고 있다. 3D 프린팅 기술의 핵심은 3D 프린팅 장비, 재료, 3D 모델링 및 슬라이싱 기능이다. 건축분야에서는 기존 제조업에서 상용화된 슬라이싱 기능을 보완하여 사용하고 있다. 본 연구에서는 건축분야의 3D 모델링을 3D 프린팅 장비로 출력하기위해 슬라이싱 기능이 포함된 설계지원도구를 개발한다. 기존 제조업 분야에서 3D 모델링 이후 출력까지의 과정을 분석하고, 특히 기존에 상용화된 슬라이싱 프로그램들의 기능을 분석한다. 또한 기존 사례 및 전문가 검토, 관련 문헌 등을 분석하여 건축분야에 필요한 슬라이싱 기능 7가지를 도출하였다. 도출된 기능들은 슬라이싱 기능에서 보다 확장하여 설계지원도구라고 명명하였다. 향후 도출된 기능들에 대한 상세한 알고리즘 및 프로세스의 개발이 필요하다.

Keywords

References

  1. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, F42.19, Ed. West Conshohocken, PA: ASTM International, 2012. Available From: : www.astm.org (accessed Oct. 07, 2019)
  2. J. Y. Shin, J. S. Won, K. B. Ju, M. B. Seo, H. J. Park, The Perception of 3D Printing Technology for Adoption in Domestic Architecture Industry, Journal of Korea Academia-Industrial Cooperation Society, Vol.18, No.11, pp. 731-739, Nov. 2017 DOI: https://doi.org/10.5762/KAIS.2017.18.11.731
  3. Keating, S. J., Leland, J. C., Cai, L., Oxman, N., "Toward site-specific and self-sufficient robotic fabrication on architectural scales", Science Robotics, 2, eaam8986, 2017. https://doi.org/10.1126/scirobotics.aam8986
  4. Wu, P., Wang, J., & Wang, X., "A critical review of the use of 3-D printing in the construction industry", Automation in Construction, 68, p.21-31, 2016. DOI: https://doi.org/10.1016/j.autcon.2016.04.005
  5. K. B. Ju, M. B. Seo, H. J. Park, "A Development of Work Breakdown Structure and Link to Standard Estimation System for 3D Printing Building", Journal of the Korea Academia-Industrial, Vol.19, No.12, pp.702-708, Dec. 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.12.702
  6. H. J. Park, M. B. Seo, K. B. Ju, "A Development of Work Item and Duration Estimation Method for 3D Printing based Building", Journal of the Korea Academia-Industrial, Vol.18, No.12, pp.200-207, Dec. 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.12.200
  7. S. J. Jung, T. H. Lee, "Study of Trends in The Architecture and The Economic Efficiency of 3D Printing Technology", Journal of Korea Academia-Industrial Cooperation Society, Vol.15, No.10, pp. 6336-6343, Oct. 2014 DOI: https://doi.org/10.5762/KAIS.2014.15.10.6336
  8. J. J. Yeon, A Study Converting BIM Data into 3D Printing Data, Master's thesis, University of Seoul, Seoul, Korea, pp.19-20, 2015.
  9. Ultimaker-cura, https://ultimaker.com/ (accessed Oct. 07, 2019)
  10. 3DPrinthuset, https://cobod.com/bod2/ (accessed Oct. 07, 2019)
  11. WASP, https://www.3dwasp.com/ (accessed Oct. 07, 2019)
  12. ICON, https://www.iconbuild.com/technology (accessed Oct. 07, 2019)
  13. CyBe, https://cybe.eu/3d-concrete-printers/ (accessed Oct. 07, 2019)
  14. Apis Cor., https://www.apis-cor.com/ (accessed Oct. 07, 2019)
  15. T. A. M. Salet, F. P. Bos, R. J. M. Wolfs, Z. Y. Ahmed, "3D concrete Printing - A structural Engineering Perspective", Proceedings of the 2017 fib Symposium, pp.51-57, Jun. 2017 DOI: https://doi.org/10.1007/978-3-319-59471-2
  16. R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, "Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing", Cement and Concrete Research, Vol.106, pp.103-116, Apr. 2018 https://doi.org/10.1016/j.cemconres.2018.02.001
  17. C. Lubombo, M. A. Huneault, "Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts", Materials Today Communications, Vol. 17, pp.214-228, Dec. 2018 DOI: https://doi.org/10.1016/j.mtcomm.2018.09.017