DOI QR코드

DOI QR Code

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation

온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가

  • Yoon, Seok (Radioactive Waste Disposal Research Division, KAERI) ;
  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Lee, Jae-Owan (Radioactive Waste Disposal Research Division, KAERI) ;
  • Kim, Geon-Young (Radioactive Waste Disposal Research Division, KAERI)
  • 윤석 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 고규현 (금오공과대학교 토목공학과) ;
  • 이재완 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2019.05.24
  • Accepted : 2019.10.28
  • Published : 2019.11.30

Abstract

The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

압축 벤토나이트는 고준위폐기물을 처분하기 위한 공학적방벽 시스템에서 중요한 구성요소 중 하나인 완충재의 후보물질로 가장 적합한 것으로 고려되고 있다. 완충재는 처분공 내 사용후핵연료가 담긴 처분용기와 근계 암반 사이에 채워지는 방벽재로서 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분 초기에는 처분용기로부터 발생하는 고온의 열량으로 인해 완충재의 포화도는 감소하지만, 그 후 주변 암반으로부터 유입되는 지하수로 인해 완충재의 포화도는 증가한다. 이렇듯 완충재는 처분 운영 조건에 따라 불포화에서 포화 상태로 도달하게 되기에 완충재의 불포화-포화 거동 특성은 공학적방벽의 전체 안전성을 좌우할 수 있는 중요한 입력자료이다. 따라서 본 연구에서는 국내 압축 벤토나이트 완충재에 대한 수분보유특성을 규명하고자 하였다. 처분 초기 온도 증가에 따라 완충재의 포화도가 감소하는 상황을 고려하여 상온에서부터 125도까지 압축 벤토나이트의 온도 증가에 따른 체적 함수비와 수분흡입력을 측정하였다. 또한 이를 상온에서 동일한 함수비에서의 수분보유능과 비교하였으며 상온에서의 수분흡입력은 1~15% 정도 크게 측정되었다.

Keywords

References

  1. Cho, W. J. (2017), "Radioactive waste disposal", KAERI/GP-495/2017.
  2. Cho, W. J. (2019), "Bentonite barrier material for radioactive waste disposal", KAERI/GP-535/2019.
  3. Cho, W. J., Kim, J. S., Yoon, S., and Kim, G. Y. (2018), "Estimation of the water suction and swelling pressure of compacted bentonite at elevated temperature", KAERI/TR-7334/2018.
  4. Delage, P., Maarcial, D., Cui, Y. J., and Ruiz, X. (2006), "Ageing Effects in a Compacted Bentointe: a Microstructure Approach", Geotechnique, Vol.56, No.5, pp.291-304. https://doi.org/10.1680/geot.2006.56.5.291
  5. Dixon, D. A., Gray, M. N., and Thomas, A. W. (1985), "A Study of the Compaction Properties of Potential Clay-sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal", Engineering Geology, Vol.21, pp.247-255. https://doi.org/10.1016/0013-7952(85)90015-8
  6. Cho, W. J. and Kim, G. Y. (2016), "Reconsideration of Thermal Criteria for Korea Spent Fuel Repository", Annals of Nuclear Energy, Vol.88, pp.73-82. https://doi.org/10.1016/j.anucene.2015.09.012
  7. JNC. (2000), "H12 project to establish technical basis for HLW disposal in Japan, Suport Report 2. Japan Nuclear Cycle Development Institute.
  8. Karnland, O. (2010), "Chemical and mineralogical characterization of the bentonite buffer for the acceptance conctrol procedure in a KBS-3 repository", Svensk Kärn-bränslehantering AB Report, SKB TR-10-60.
  9. Kim, J. S., Yoon, S., Cho, W. J., Choi, Y. C., and Kim, G. Y. (2018), "A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer in a High-level Nuclear Waste Repository", Journal of Nuclear Fuel Cycle Waste Technology, Vol.16, No.1, pp.123-136. https://doi.org/10.7733/jnfcwt.2018.16.1.123
  10. Lee, C., Cho, W. J., Lee, J., and Kim, G. Y. (2019), "Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2- MP/FLAC3D Simulator", Journal of Nuclear Fuel Cycle Waste Technology, Vol.17, No.2, pp.183-202. https://doi.org/10.7733/jnfcwt.2019.17.2.183
  11. Lee, J. O., Cho, W. J., and Kwon, S. (2011), "Thermal-hydromechanical Properties of Refernece Bentonite Buffer for a Korean HLW Repository", Tunnel and Underground Space, Vol.21, No.4, pp.264-273. https://doi.org/10.7474/TUS.2011.21.4.264
  12. Lee, J. O., Kim, G. Y., and Yoon, S. (2017), "System planning for measuring coupled THM properties of buffer: SWRC measurement of unsaturated compacted bentonite, KAERI/TR-7009/2017.
  13. Lee, J. O., Lee, M. S., Choi, H. J., Lee, J. Y., and Kim, I. Y. (2014), "Establishment of the concept of buffer for an HLW repository: An approach", KAERI/TR-5824/2014.
  14. Lee, J. Y., Cho, D. K., Choi, H. J., and Choi, J. W. (2007), "Concept of a Korean Reference Disposal System for Spent Fuels", Journal of Nuclear Science and Technology, Vol.44, No.12, pp. 1565-1573. https://doi.org/10.3327/jnst.44.1565
  15. Lloret, A., Villar, M. V., Sanchez, M., Gens, A., Pintado, X., and Alonso, E. E. (2003), "Mechanical behavior of Heavily Compacted Bentonite under High Suction Changes", Geotechnique, Vol.53, pp.27-40. https://doi.org/10.1680/geot.2003.53.1.27
  16. Ma, C. and Hueckel, T. (1992), "Stress and Pore Pressssure in Saturated Clay Subject to Heat from Radioactive Waste: a Numerical Simulation", Canadian Geotechnical Journal, Vol.29, pp.1087-1094. https://doi.org/10.1139/t92-125
  17. Nguyen-Tuan, L. (2014), "Coupled thermo-hydro-mechanical analysis: experiment and back analysis", Ph.D Thesis, Ruhr-Universitat Bochum.
  18. Tang, A. M., Cui, Y, J., and Le, T. T. (2008), "A Study on the Thermal Conductivity of Compacted Bentonite", Applied Clay Science, Vol.41, pp.181-189. https://doi.org/10.1016/j.clay.2007.11.001
  19. Villar, M. V. (2004), "Thermo-hydro-mechanical characterization and process in the clay barrier of a high level radioactive waste repository", State of the Art Report. Informes Tecnicos Ciemat 1044, Octubre.
  20. Villar, M. V. and Lloret, A. (2004), "Influence of Temperature on the Hydro-mechanical behavior of a Compacted Bentonite", Applied Clay Science, Vol.26, pp.337-350. https://doi.org/10.1016/j.clay.2003.12.026
  21. Villar, M. V., Martin, P. L., and Barcala, J. M. (2006), "Modification of Physical, Mechanical and Hydraulic Properties of Bentonite by Thermo-hydraulic Gradients", Engineering Geology, Vol.81, pp. 284-297. https://doi.org/10.1016/j.enggeo.2005.06.012
  22. Wan, M., Ye, W. M., Chen, Y. G., Cui, Y. J., and Wang, J. (2015), "Influence of Temperature on the Water Retention Properties of Compacted GMZ01 Bentonite", Environmental Earth Science, Vol.73, pp.4053-4061. https://doi.org/10.1007/s12665-014-3690-y
  23. Ye, W. M., Wan, W., Chen, B., Chen, Y. G., Cui, Y. J., and Wang, J. (2012), "Temperature Effects on the Unsaturated Permeability of the Densely Compacted GMZ201 Bentonite under Confined Condition", Engineering Geology, Vol.126, pp.1-7. https://doi.org/10.1016/j.enggeo.2011.10.011
  24. Yoo, M., Choi, H. J., Lee, M. S., and Lee, S. Y. (2016), "Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository", Journal of Nuclear Fuel Cycle Waste Technology, Vol.14, No.2, pp.135-147. https://doi.org/10.7733/JNFCWT.2016.14.2.135
  25. Yoon S., Cho, W., Lee, C., and Kim, G. Y. (2018), "Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository", Energies, Vol.11, pp.2269. https://doi.org/10.3390/en11092269
  26. Yoon, S., Jeon, J. S., Kim, G. Y., Seong, J. H., and Baik, M. H. (2019), "Specific Heat Capacity Model for Compacted Bentonite Buffer Materials", Annals of Nuclear Energy, Vol.125, pp.18-25. https://doi.org/10.1016/j.anucene.2018.10.045