DOI QR코드

DOI QR Code

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition

배수조건에 따른 액상화 수치모델의 거동평가

  • 이진선 (원광대학교 토목환경공학과) ;
  • 김성남 (한국수자원공사 포항권지사) ;
  • 김동수 (KAIST 건설 및 환경공학과)
  • Received : 2019.10.06
  • Accepted : 2019.10.28
  • Published : 2019.11.30

Abstract

Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

동적원심모형 시험 결과를 기준으로 액상화모델과 응답이력해석 절차에 대한 검증을 시행하였다. 사용된 동적원심모형시험 결과는 LEAP-2017(Liquefaction Experiments Analysis Project)의 일환으로 시행된 결과이다. 시험을 위한 모형지반은 오타와 F-65모래를 이용하여 강성토조 내부 수면아래 상대밀도 55%, 표면경사 5°로 조성되었다. 진폭이 변화하는 주파수 1Hz 사인파형 입력운동을 강성토조 하단에 가진하였다. 수치해석은 원심모형시험의 원형스케일에 대해서 2차원 유한차분 해석기법을 이용하여 수행되었다. 지반은 전단파괴 이전 이력감쇠를 나타내며 전단 파괴기준은 Mohr-Coulomb 모델을 따르도록 모델링 되었다. 정적평형 후 반복하중으로 인한 간극수압의 변화를 묘사하기 위하여 Byrne의 액상화 모델을 적용하였다. 액상화 해석에 적합한 흐름조건을 확인을 위하여 수치해석은 배수 및 비배수 조건으로 시행하였으며, 비배수 해석조건에서 시행된 수치해석결과가 원심모형시험과 유사한 결과를 제시함을 알 수 있었다.

Keywords

References

  1. Byrne, P.M. (1991), "A Cyclic Shear-volume Coupling and Porepressure Model for Sand", Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No.1.24, pp.47-55.
  2. Chian, S.C. (2015), "Empirical Excess Pore Pressure Dissipation Model for Liquefiable Sands", Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, New Zealand, Christchurch.
  3. Choo, Y.W. and Kim, D.S. (2005), "Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions", Journal of the Korean Geotechnical Society, Vol.21, No.3, pp.27-42.
  4. Dokainish, M.A. and Subbaraj, K.A. (1988), "Survey of Direct Time-integration Methods in Computational Structural Dynamics-I. Explicit Methods", Computers and Structures, Vol.32, pp.1371- 1386, DOI:10.1016/0045-7949(89)90314-3.
  5. Garnier, J., Gaudin, C., Springman, S.M., Culligan, P.J., Goodings, D., Konig, D., Kutter, B., Phillips, R., Randolph, M.F., and Thorel, L., (2007), "Catalogue of Scaling Laws and Similitude Questions in Geotechnical Centrifuge Modelling", International Journal of Physical Modelling in Geotechnics, Vol.7, No.1-23, pp.1-23.
  6. Hardin, B.O. and Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils: Design Equations and Curves", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692. https://doi.org/10.1061/JSFEAQ.0001760
  7. Iai, S., Ichii, K., Liu, H., and Morita, T. (1998), "Effective Stress Analyses of Ports Structures", Soil and Foundations, Vol.38, No. (SP), pp.97-114.
  8. Itasca Consulting Group (2018), FLAC2D (Fast Lagrangian Analysis of Continua in 2 Dimensions) User's Guide, Minnesota, USA.
  9. Kim, D.S. and Stokoe, K.H. (1994), "Torsional Motion MonitoringSystem for Small-Strain (10-5 to 10-3%) Soil Testing", GeotechnicalTesting Journal, Vol.17, No.1, 1994, pp.17-26, https://doi.org/10.1520/GTJ10068J.
  10. Kim, J.H., Choo, Y.W., and Kim, D.S. (2017a), "Correlation between the Shear-Wave Velocity and Tip Resistance of Quartz Sand in a Centrifuge", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.11, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001782.
  11. Kim, S.N., Lee, M.G., Ha, J.G., Kim, J.H., and Kim, D.S. (2017b), "Comparison of Liquefaction Behavior with Different Relative Density using Centrifuge Test", Proceedings of The 30th KKHTCNN Symposium on Civil Engineering, National Taiwan University, Taipei, Taiwan.
  12. Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Upper Saddle River, N.J., Prentice Hall., ISBN 0-13-374943-6, p.238.
  13. Kutter, B.L. and Wilson, D.W. (1999), "De-liquefaction Shock Waves", In: Proceedings of the seventh US-Japan workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction, Seattle, pp.295-310.
  14. Kutter, B., Carey, T., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., et al. (2017), "LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons", Soil Dynamics and Earthquake Engineering, Vol.113, pp.1-13, doi:10.1016/j.soildyn.2017.05.018.
  15. Kutter, B., Zeghal, M., Manzari, M. (2018-10-08), "LEAP-UCD- 2017 Experiments (Liquefaction Experiments and Analysis Projects)", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2N10S
  16. Lee, J.S. and Noh, G.D. (2016), "Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis", Journal of Earthquake Engineering Society of Korea, Vol.20, No.6, pp.401-412. https://doi.org/10.5000/EESK.2016.20.6.401
  17. Lee, J.S., Park, T.J., Lee, M.G., and Kim, D.S. (2018), "Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.34, No.11, pp.57-70. https://doi.org/10.7843/KGS.2018.34.11.57
  18. Manzari, M.T. et al. (2018), "Liquefaction Experiment and Analysis Projects (LEAP): Summary of observations from the planning phase", Soil Dynamics and Earthquake Engineering, Vol.113, pp.714-743. doi: 10.1016/j.soildyn.2017.05.015 5.
  19. Martin, G.R., Finn, W.D.L., and Seed, H.B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical Engineering Division, ASCE, Vol.101, (GT5), pp.423-438. https://doi.org/10.1061/AJGEB6.0000164
  20. Mejia, L.H. and Dawson, E.M. (2006), "Earthquake Deconvolution for FLAC", Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0-9767577-0-2.
  21. Okamura, M., Inoue, T. (2012), "Preparation of Fully Saturated Models for Liquefaction Study", International Journal of Physical Modelling in Geotechnics, Vol.12, pp.39-46. https://doi.org/10.1680/ijpmg.2012.12.1.39
  22. Bastidas, A.M.P. (2016), Ottawa F-65 Sand Characterization. Ph. D Dissertation. UC Davis.
  23. Schofield, A.N. (1980), "Cambridge Geotechnical Centrifuge Operations, Twentieth Rankine Lecture", Geotechnique, Vol.30, No.3, pp.227-68. http://dx.doi.org/10.1680/geot.1980.30.3.227.
  24. Seed, H.B. and Idriss, I.M. (1970), Soil Moduli and Damping Factors for Dynamic Response Analysis, Report No. UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley.
  25. Wang, J., Sato, M., Yoshida, N., and Kurose, H. (2000), "Liquefaction Analysis of Seawall Structures under Both Drained and Undrained Conditions", Proceedings of the 12th World Conference on Earthquake Engineering (Auckland), No.1300.
  26. Youd, T.L. (1977), "Packing Changes and Liquefaction Susceptibility", Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT8, pp.918-923. https://doi.org/10.1061/AJGEB6.0000478