DOI QR코드

DOI QR Code

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula

한반도 호우유형의 중규모 특성 및 예보 가이던스

  • Kim, Sunyoung (AI Weather Forecast Research Team, National Institute of Meteorological Sciences) ;
  • Song, Hwan-Jin (AI Weather Forecast Research Team, National Institute of Meteorological Sciences) ;
  • Lee, Hyesook (AI Weather Forecast Research Team, National Institute of Meteorological Sciences)
  • 김선영 (국립기상과학원 인공지능예보연구팀) ;
  • 송환진 (국립기상과학원 인공지능예보연구팀) ;
  • 이혜숙 (국립기상과학원 인공지능예보연구팀)
  • Received : 2019.07.23
  • Accepted : 2019.09.25
  • Published : 2019.11.30

Abstract

This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Keywords

References

  1. Ahn, S.-H., K.-J. Park, J.-Y. Kim, and B.-J. Kim, 2015: The characteristics of the frequency and damage for meteorological disasters in Korea. J. Korean Soc. Hazard Mitig., 15, 133-144, doi:10.9798/KOSHAM.2015.15.2.133 (in Korean with English abstract).
  2. Byun, K.-Y., and T.-Y. Lee, 2012: Remote effects of tropical cyclones on heavy rainfall over the Korean peninsula-statistical and composite analysis. Tellus A, 64, 14983, doi:10.3402/tellusa.v64i0.14983.
  3. Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135-136, 404-414, doi: 10.1016/j.atmosres.2012.06.028.
  4. Cho, N.-S. and T.-Y. Lee, 2006: A numerical study of multiple convection bands over the Korean peninsula. Asia-Pac. J. Atmos. Sci., 42, 87-105.
  5. Choi, Y.-S., C.-H. Ho, M.-H. Ahn, and Y.-M. Kim, 2007: An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) Imagery. Int. J. Remote Sens., 28, 4715-4732, doi:10.1080/01431160701264235.
  6. Franklin, C. N., A. Protat, D. Leroy, and E. Fontaine, 2016: Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system. Atmos. Chem. Phys., 16, 8767-8789, doi:10.5194/acp-16-8767-2016.
  7. Furtado, K., P. R. Field, Y. Luo, X. Liu, Z. Guo, T. Zhou, B. J. Shipway, A. A. Hill, and J. M. Wilkinson, 2018: Cloud microphysical factors affecting simulations of deep convection during the presummer rainy season in southern China. J. Geophys. Res. Atmos., 123, 10477-10505, doi:10.1029/2017JD028192.
  8. Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.
  9. Hwang, S.-O., and D.-K. Lee, 1993: A study on the relationship between heavy rainfall and associated lowlevel jets in the Korean peninsula. J. Korean Meteor. Soc., 29, 133-146 (in Korean with English abstract).
  10. Jung, S.-P., S.-R. In, H.-W. Kim, J. Sim, S.-O. Han, and B.-C. Choi, 2015: Classification of atmospheric vertical environment associated with heavy rainfall using long-term radiosonde observational data, 1997-2013. Atmosphere, 25, 611-622, doi:10.14191/Atmos.2015.25.4.611 (in Korean with English abstract).
  11. Kar, S. K., and K.-J. Ha, 2003: Characteristic differences of rainfall and cloud-to-ground lightning activity over South Korea during the summer monsoon season. Mon. Weather Rev., 131, 2312-2323, doi:10.1175/1520-0493(2003)131<2312:CDORAC>2.0.CO;2.
  12. Kim, H., K.-S. Han, C. S. Lee, and I. Shin, 2015: A sensitivity analysis of accuracy for COMS outgoing longwave radiation product. Korean J. Remote Sens., 31, 39-46, doi:10.7780/kjrs.2015.31.1.5.
  13. Kim, H. W., and D. K. Lee, 2006: An observational study of mesoscale convective systems with heavy rainfall over the Korean peninsula. Wea. Forecasting, 21, 125-148, doi:10.1175/WAF912.1.
  14. Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc., 123, 389-405, doi:10.1002/qj.49712353807.
  15. Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 2306-2320, doi:10.1175/JAS-D-10-05000.1.
  16. Lee, D.-K., H.-R. Kim, and S.-Y. Hong, 1998: Heavy rainfall over Korea during 1980-1990. Korean J. Atmos. Sci., 1, 32-50.
  17. Lee, J.-Y., and Coauthors, 2017: The long-term variability of changma in the East Asian summer monsoon system: A review and revisit. Asia-Pac. J. Atmos. Sci., 53, 257-272. doi:10.1007/s13143-017-0032-5.
  18. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy Precipitation Systems over the Korean Peninsula and their Classification. Asia-Pac. J. Atmos. Sci., 43, 367-396.
  19. Li, P., K. Furtado, T. Zhou, H. Chen, J. Li, Z. Guo, and C. Xiao, 2018: The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales. Climate Dyn., doi:10.1007/s00382-018-4368-z.
  20. Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227-239, doi:10.14191/Atmos.2019.29.2.227 (in Korean with English abstract).
  21. Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475-1493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.
  22. Oh, H.-J., B.-J. Sohn, E. A. Smith, F. J. Turk, A.-S. Seo, and H.-S. Chung, 2002: Validating infrared-based rainfall retrieval algorithms with 1-minute spatially dense raingage measurements over Korean peninsula. Meteor. Atmos. Phys., 81, 273-287, doi:10.1007/s00703-002-0552-z.
  23. Oue, M., H. Uyeda, and Y. Shusse, 2010: Two types of precipitation particle distribution in convective cells accompanying a Baiu frontal rainband around Okinawa Island, Japan. J. Geophys. Res., 115, D02201, doi:10.1029/2009JD011957.
  24. Park, C.-G., and T.-Y., Lee, 2008: Structure of mesoscale heavy precipitation systems originated from the Changma front. Atmosphere, 18, 317-338 (in Korean with English abstract).
  25. Park, S.-U., C.-H. Joung, S.-S. Kim, D.-K. Lee, S.-C. Yoon, Y.-K. Jeong, and S. G. Hong, 1986: Synopticscale features of the heavy rainfall occurred over Korea during 1-3 September 1984. Asia-Pac. J. Atmos. Sci., 22, 42-81.
  26. Rha, D.-K., C.-H. Kwak, M.-S. Suh, and Y. Hong, 2005: Analysis of the characteristics of precipitation over South Korea in terms of the associated synoptic patterns: A 30 years climatology (1973-2002). J. Korean Earth Sci. Soc., 26, 732-743 (in Korean with English abstract).
  27. Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc., 116, 435-460, doi:10.1002/qj.49711649210.
  28. Sohn, B. J., H.-J. Han, and E.-K. Seo, 2010: Validation of satellite-based high-resolution rainfall products over the Korean peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701-714, doi:10.1175/2009JAMC2266.1.
  29. Sohn, B. J., G.-H. Ryu, H.-J. Song, and M.-L. Oh, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements. Mon. Weather Rev., 141, 3873-3888, doi:10.1175/MWR-D-13-00075.1.
  30. Song, H.-J., and B.-J. Sohn, 2015: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Wea. Rev., 143, 363-382, doi:10.1175/MWR-D-14-00184.1.
  31. Song, H.-J., and B.-J. Sohn, 2018: An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pac. J. Atmos. Sci., 54, 1-12, doi:10.1007/s13143-018-0006-2.
  32. Song, H.-J., B.-J. Sohn, S.-Y. Hong, and T. Hashino, 2017: Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. J. Geophys. Res. Atmos., 122, 1685-1699, doi:10.1002/2016JD02563.
  33. Song, H.-J., B. Lim, and S. Joo, 2019: Evaluation of rainfall forecasts with heavy rain types in the high-resolution Unified Model over South Korea. Wea. Forecasting, 34, 1277-1293, doi:10.1175/WAF-D-18-0140.1.
  34. Takahashi, T., 2006: Precipitation mechanisms in East Asian monsoon: Videosonde study. J. Geophys. Res., 111, D09202, doi:10.1029/2005JD006268.
  35. Takahashi, T., T. Kawano, and M. Ishihara, 2015: Different precipitation mechanisms produce heavy rain with and without lightning in Japan. J. Meteorol. Soc. Jpn., 93, 245-263, doi:10.2151/jmsj.2015-014.
  36. Tapiador, F. J., J.-L. Sanchez, and E. Garcia-Ortega, 2019: Empirical values and assumptions in the microphysics of numerical models. Atmos. Res., 215, 214-238, doi:10.1016/j.atmosres.2018.09.010.
  37. Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.
  38. Williams, E. R., R. Zhang, and J. Rydock, 1991: Mixedphase microphysics and cloud electrification. J. Atmos. Sci., 48, 2195-2203, doi:10.1175/1520-0469(1991)048<2195:MPMACE>2.0.CO;2.
  39. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Q. J. R. Meteorol. Soc., 125, 1607-1636, doi:10.1002/qj.49712555707.
  40. Zhang, C.-Z., H. Uyeda, H. Yamada, B. Geng, and Y. Ni, 2006: Characteristics of mesoscale convective systems over the east part of continental China during the Meiyu from 2001 to 2003. J. Meteorol. Soc. Jpn., 84, 763-782, doi:10.2151/jmsj.84.763.
  41. Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thund erstorms on earth? Bull. Amer. Meteorol. Soc., 87, 1057-1071, doi:10.1175/BAMS-87-8-1057.