DOI QR코드

DOI QR Code

Effect of Vitamin and Sulfur Sources on Syngas Fermentation Using Clostridium autoethanogenum

Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 비타민과 황 공급원의 영향

  • Im, Hongrae (Department of Chemical Engineering, Hankyong National University) ;
  • An, Taegwang (Department of Chemical Engineering, Hankyong National University) ;
  • Park, Soeun (Research Center of Chemical Technology, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University)
  • 임홍래 (한경대학교 화학공학과) ;
  • 안태광 (한경대학교 화학공학과) ;
  • 박소은 (한경대학교 화학기술연구소) ;
  • 김영기 (한경대학교 화학공학과)
  • Received : 2019.10.04
  • Accepted : 2019.10.28
  • Published : 2019.12.10

Abstract

In this work, the effect of the culture medium composition on microbial growth and ethanol production in Clostridium autoethanogenum culture was investigated to enhance the ethanol productivity. D-Ca-pantothenate, vitamin B12 (as vitamins), and sodium sulfide (as sulfur source) were selected as examined components, and the effects of components' concentration on cell growth and ethanol production was investigated. For D-Ca-pantothenate concentrations varing from 0.5, 5, 50 and 500 mg/L, a slight increase in the ethanol production was observed at the 0.5 mg/L, but negligible differences in microbial growth and ethanol production were measured for the concentration ranges examined. The effect of vitamin B12 concentrations from 0.1, 1.0, 10, and 100 mg/L on the microbial growth and ethanol production was investigated, and it was found that the ethanol production using a 0.1 mg/L of vitamin B12 concentration increased by 245% compared to that of using the basic medium concentration (10 mg/L). The effect of sodium sulfide concentrations (0.5, 5, and 10 g/L) on the microbial growth and ethanol production was also studied, and the inhibition of microbial growth was observed when the sodium sulfide usage was over 0.5 g/L. In conclusion, changes in D-Ca-pantothenate and sodium sulfide concentrations did not affect the ethanol production, whereas even a 100 times lower concentration of vitamin B12 than that of the basic medium improved the production.

이 연구에서는 합성가스를 기질로 사용하는 Clostridium autoethanogenum 배양 공정에서 에탄올 생산성 향상을 위하여 배지 성분의 농도가 균주 성장과 에탄올 생산에 미치는 영향을 조사하였다. C. autoethanogenum 배양에 사용되는 기본 배지 구성 성분 중 비타민 종류인 D-Ca-pantothenate, vitamin B12와 황 공급원인 sodium sulfide를 조사 대상 성분으로 선정하여 이 성분들의 농도를 달리하였을 때 균주 성장과 에탄올 생산에 미치는 영향을 확인하였다. D-Ca-pantothenate는 0.5, 5, 50, 500 mg/L 농도를 시험하였으며 0.5 mg/L에서 에탄올 생산량이 약간 증가하는 경향을 보였지만 시험한 농도 범위에서 균주의 성장이나 에탄올 생산에 대한 주목할 만한 영향은 관찰되지 않았다. Vitamin B12는 0.1, 1.0, 10, 100 mg/L의 농도범위에서 균주 성장과 에탄올 생산에 미치는 영향을 관찰하였으며, 0.1 mg/L 농도에서 에탄올 생산농도가 일반적 기본배지 농도인 10 mg/L에서보다 245% 증가되는 것을 확인하였다. Sodium sulfide는 0.5, 5, 10 g/L 농도범위에서 균주 성장과 에탄올 생산에 미치는 영향을 분석하였으며, 기본배지의 사용농도인 0.5 g/L을 초과하여 과잉 공급하였을 때, 균주 성장 저해 현상이 관찰되었다. 결과적으로 연구에 사용된 세 가지 배지 성분 중, D-Ca-pantothenate와 sodium sulfide는 배지 내 성분 농도에 따른 에탄올 생산농도 향상을 이루지 못하였으나, vitamin B12는 기본 배지 내 일반적인 농도의 1/100을 사용함으로써 에탄올 생산농도 향상을 이룰 수 있었다.

Keywords

References

  1. R. K. Prasad, S. Chatterjee, P. B. Mazumder, S. K. Gupta, M. G. Vairale, S. Datta, S. K. Dwivedi, and D. K. Gupta, Bioethanol production from waste lignocelluloses: A review on microbial degradation potential, Chemosphere, 231, 588-606 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.142
  2. A. Singla, D. Verma, B. Lal, and P. M. Sarma, Enrichment and optimization of an-aerobic bacterial mixed culture for conversion of syngas to ethanol, Bioresour. Technol., 172, 41-49 (2014). https://doi.org/10.1016/j.biortech.2014.08.083
  3. J. E. Woo and Y.-S. Jang, Recent advances on bioalcohol production from syngas using microorganisms, Appl. Biol. Chem., 60, 333-338 (2017). https://doi.org/10.3839/jabc.2017.052
  4. K. Arslan, B. Bayar, H. N. Abubackar, M. C. Veiga, and C. Kennes, Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas, Bioresour. Technol., 292, 121941 (2019). https://doi.org/10.1016/j.biortech.2019.121941
  5. H. N. Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122-127 (2015). https://doi.org/10.1016/j.biortech.2015.02.113
  6. H. Xu, C. Liang, J. Xu, Q. Hua, and Y. Guo, A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system, Enzyme Microb. Technol., 101, 24-29 (2017). https://doi.org/10.1016/j.enzmictec.2017.03.002
  7. J. Saxena and R. S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei, J. Ind. Microbiol. Biotechnol., 38, 513-521 (2011). https://doi.org/10.1007/s10295-010-0794-6
  8. X. Sun, H. K. Atiyeh, H. Zhang, R. S. Tanner, and R. L. Huhnke, Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar, Appl. Energy, 236, 1269-1279 (2019). https://doi.org/10.1016/j.apenergy.2018.12.010
  9. D. K. Kundiyana, R. L. Huhnke, P. Maddipati, H. K. Atiyeh, and M. R. Wilkins, Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermenta-tion medium during synthesis gas fermentation, Bioresour. Technol., 101, 9673-9680 (2010). https://doi.org/10.1016/j.biortech.2010.07.054
  10. K. Liu, H. K. Atiyeh, R. S. Tanner, M. R. Wilkins, and R. L. Huhnke, Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi, Bioresour. Technol., 104, 336-341 (2012). https://doi.org/10.1016/j.biortech.2011.10.054
  11. S. Ramio-Pujol, R. Ganigue, L. Baneras, and J. Colprim, Incubation at $25^{\circ}C$ pre-vents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour. Technol., 192, 296-303 (2015). https://doi.org/10.1016/j.biortech.2015.05.077
  12. J. Gao, H. K. Atiyeh, J. R. Phillips, M. R. Wilkins, and R. L. Huhnke, Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei, Bioresour. Technol., 147, 508-515 (2013). https://doi.org/10.1016/j.biortech.2013.08.075
  13. Y.-K. Kim, S. E Park, and B. H. Ahn, Effect of medium composition on cell growth and product formation in Clostridium authethanogenum culture, Korean Soc. Biotechnol. Bioeng. J., 33, 83-88 (2018).
  14. D. K. Kundiyana, M. R. Wilkins, P. Maddipati, and R. L. Huhnke, Effect of tem-perature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei", Bioresour. Technol., 102, 5794-5799 (2011). https://doi.org/10.1016/j.biortech.2011.02.032
  15. Y.-K. Kim, S. E. Park, H. Lee, and J. Y. Yun, Enhancement of bioethanol pro-duction in syngas fermentation with Clostridium ljungdahlii using nanoparticles, Bioresour. Technol., 159, 446-450 (2014). https://doi.org/10.1016/j.biortech.2014.03.046
  16. Y.-K. Kim and H. Lee, Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation, Bioresour. Technol., 204, 139-144 (2016). https://doi.org/10.1016/j.biortech.2016.01.001
  17. J. J. Orgill, H. K. Atiyeh, M. Devarapalli, J. R. phillips, R. S. Lewis, and R. L. Huhnke, A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors, Bioresour. Technol., 133, 340-346 (2013). https://doi.org/10.1016/j.biortech.2013.01.124
  18. D. Xu, D. R. Tree, and R. S. Lewis, The effects of syngas impurities on syngas fermentation to liquid fuels, Biomass Bioenergy, 35, 2690-2696 (2011). https://doi.org/10.1016/j.biombioe.2011.03.005
  19. P. Maddipati, H. K. Atiyeh, D. D. Bellmer, and R. L. Huhnke, Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient re-placement to yeast extract, Bioresour. Technol., 102, 6494-6501 (2011). https://doi.org/10.1016/j.biortech.2011.03.047
  20. R. Ganigue, P. Sanchez-Paredes, L. Baneras, and J. Colprim, Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation, Front. Microbiol., 7, 702-702 (2016).
  21. Y. Shen, R. C. Brown, and Z. Wen, Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced eth-anol production, Appl. Energy, 187, 585-594 (2017). https://doi.org/10.1016/j.apenergy.2016.11.084
  22. B. E. Skidmore, R. A. Baker, D. R. Banjade, J. M. Bray, D. R. Tree, and R. S. Lewis, Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency, Biomass Bioenergy, 55, 156-162 (2013). https://doi.org/10.1016/j.biombioe.2013.01.034
  23. H. N. Abubackar, M. C. Veiga, and C. Kennes, Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol, Biofuel. Bioprod, Biorefin., 5, 93-114 (2011). https://doi.org/10.1002/bbb.256
  24. J. Zhang, S. Taylor, and Y. Wang, Effects of end products on fermentation pro-files in Clostridium carboxidivorans P7 for syngas fermentation, Bioresour. Technol., 218, 1055-1063 (2016). https://doi.org/10.1016/j.biortech.2016.07.071
  25. S. Ramio-Pujol, R. Ganigue, L. Baneras, and J. Colprim, How can alcohol pro-duction be improved in carboxydotrophic clostridia, Process Biochem., 50, 1047-1055 (2015). https://doi.org/10.1016/j.procbio.2015.03.019
  26. M. J. Taherzadeh, G.Liden, L.Gustafsson, and C. Niklasson, The effects of pan-tothenate deficiency and acetate addition on anaerobic batch fermentation of glu-cose by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 46, 176-182 (1996). https://doi.org/10.1007/s002530050801
  27. R. V. Vadali, G. N. Bennett, and K.-Y. San, Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli, Metab. Eng., 6, 133-139 (2004). https://doi.org/10.1016/j.ymben.2004.02.001
  28. D. K. Kundiyana, R. L. Huhnke, and M. R. Wilkins, Effect of nutrient limitation and two-stage continuous fermentor design on productivities during "Clostridium ragsdalei" syngas fermentation, Bioresour. Technol., 102, 6058-6064 (2011). https://doi.org/10.1016/j.biortech.2011.03.020
  29. J. H. Sim and A. H. Kamaruddin, Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium - Clostridium aceticum using statis-tical approach, Bioresour. Technol., 99, 2724-2735 (2008). https://doi.org/10.1016/j.biortech.2007.07.004