DOI QR코드

DOI QR Code

Simultaneous Treatment of Tar and Particles Using Oil Scrubber and Bag Filter in Biomass Gasification

오일 스크러버 및 집진장치를 통한 바이오매스 가스화 공정 발생 타르 및 입자 제거 연구

  • Kim, Joon Yub (Korea Institute of Industrial Technology) ;
  • Jo, Young Min (Department of Applied Environmental Science, Kyunghee University) ;
  • Kim, Sang Bum (Korea Institute of Industrial Technology)
  • Received : 2019.09.25
  • Accepted : 2019.11.03
  • Published : 2019.12.10

Abstract

A combustible producer gas composed of H2, CO and CH4 could be obtained by the thermal-chemical conversion of biomass. However, a large amount of particulate matters including tar generated causes the mal-function of turbines and engines or the fouling of pipelines. In this study, a wet scrubber using the soybean oil and bag filter were installed, and the removal efficiency was investigated. Hydrate limestone and wood char base activated carbon were pre-coated on the filter medium to prevent clogging of open pores. The removal efficiencies by the bag filter were 86 and 80% for the hydrated limestone and activated carbon coating, respectively. Overall, the collection when using a series of oil scrubbers and bag filters were 88%, while 83% for the filter coating material.

가스화(gasification)는 바이오매스로부터 에너지를 얻을 수 있는 방법 중 하나로 열화학적 변환을 통해 수소, 일산화탄소, 메탄 등으로 조성된 가연성 가스인 'producer gas'를 생산할 수 있다. 하지만 producer gas와 함께 타르(tar)를 비롯한 ash 등의 입자상 물질이 함께 생성돼, 발전 터빈이나 연소 엔진 등에 유입되어 고장을 일으키거나 배관 등에 축적되어 막힘 현상 등을 야기하므로 제거가 필요하다. 본 연구에서는 producer gas 중 타르 및 입자 제거를 위해 오일 스크러버(oil scrubber)와 집진장치를 도입하였다. 흡수용매로써 타르를 효과적으로 제거가 가능한 대두유를 사용하였고, 스크러버의 용매 온도에 따라 제거효율이 어떻게 변화하는지 실험을 통해 관찰하였다. 집진장치에는 타르로 인한 필터 눈 막힘 현상 등의 문제를 방지하기 위해 pre-coating 기술을 도입하였다. Pre-coating에 사용할 물질로써 분말 소석회와 목탄계 활성탄(wood char)을 사용하였으며, 타르(tar)를 비롯한 입자 평균 제거 효율은 소석회를 pre-coating 물질로 사용 시 86%, 활성탄의 경우 80%로 나타났다. 스크러버와 집진장치를 동시에 사용한 경우에는 평균 제거효율이 소석회는 88%, 활성탄의 경우 83%로 나타났다.

Keywords

References

  1. R. K. Pachauri and L. Meyer, Climate Change 2014 Synthesis Report, 2-16, IPCC, Geneva, Switzerland (2015).
  2. G. Santos, Road transport and $CO_2$ emissions: What are the challenges?, Transp. Policy, 59, 71-74 (2017). https://doi.org/10.1016/j.tranpol.2017.06.007
  3. P. A. Owusu and S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Eng., 3, 1-14 (2016). https://doi.org/10.1080/2331186X.2016.1139438
  4. P. McKendry, Energy production from biomass (part 1): Overview of biomass, Bioresour. Technol., 83, 37-46 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3
  5. J. Han and H. Kim, The reduction and control technology of tar during biomass gasification/pyrolysis: An overview, Renew. Sustain. Energy Rev., 12, 397-416 (2008). https://doi.org/10.1016/j.rser.2006.07.015
  6. M. Dudynski, J. C. van Dyk, K. Kwiatkowski, and M. Sosnowska, Biomass gasification: Influence of torrefaction on syngas production and tar formation, Fuel Process. Technol., 131, 203-212 (2015). https://doi.org/10.1016/j.fuproc.2014.11.018
  7. Z. A. El-Rub, E. A. Bramer, and G. Brem, Review of catalysts for tar elimination in biomass gasification processes, Ind. Eng. Chem. Res., 43, 6911-6919 (2004). https://doi.org/10.1021/ie0498403
  8. W. Torres, S. S. Pansare, and J. G. Goodwin Jr., Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas, Catal. Rev., 49, 407-456 (2007). https://doi.org/10.1080/01614940701375134
  9. P. Shrivastav, M. Kr. Karmakar, P. Chandra, and P. Kr. Chatterjee, A review on the fuel gas cleaning technologies in gasification process, J. Environ. Chem. Eng., 3, 689-702 (2015). https://doi.org/10.1016/j.jece.2015.02.011
  10. N. K. Kaisalo, M.-L. Koskinen-Soivi, P. A. Simel, and Juha Lehtonen, Effect of process conditions on tar formation from thermal reactions of ethylene, Fuel, 153, 118-127 (2015) https://doi.org/10.1016/j.fuel.2015.02.085
  11. S. Anisa and Z. A. Zainal, Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review, Renew. Sustain. Energy Rev., 15, 2355-2377 (2011). https://doi.org/10.1016/j.rser.2011.02.018
  12. T. Tarnpradab, S. Unyaphan, F. Takahashi, and K. Yoshikawa, Improvement of the biomass tar removal capacity of scrubbing oil regenerated by mechanical solid-liquid separation, Energy Fuels, 31, 1564-1573 (2017). https://doi.org/10.1021/acs.energyfuels.6b02252
  13. S. Tuomi, E. Kurkela, P. Simell, and M. Reinikainen, Behaviour of tars on the filter in high temperature filtration of biomass-based gasificatipn, Fuel, 139, 220-231 (2015) https://doi.org/10.1016/j.fuel.2014.08.051
  14. L. Ma, H. Verelst, and G. V. Baron, Integrated high temperature gas cleaning: Tar removal in biomass gasification with a catalytic filter, Catal. Today, 105, 729-734 (2005). https://doi.org/10.1016/j.cattod.2005.06.022
  15. H.-J. Choi, Preparation and Characterization of Ceramic Filter Media, Ph.D dissertation, Korea University, Seoul, Korea (2015).
  16. P. Hasler and T. Nussbaumer, Gas cleaning for IC engine applications from fixed bed biomass gasification, Biomass Bioenergy, 16, 385-395 (1999) https://doi.org/10.1016/S0961-9534(99)00018-5
  17. E. Schmidt and T. Pilz, Raw gas conditioning and other additional techniques for improving surface filter performance, Filtration & Seperation, 33(5), 409-415 (1996). https://doi.org/10.1016/S0015-1882(97)84301-7
  18. E. Ravert, Precoating new filters for better airflow, longer filter life, Powder Bulk Engineering, 1-5, CSC Publishing, USA (2006).
  19. S. Schiller and H.-J. Schmid, Ultrafine dust filtration using precoat materials considering the influence of filter media, Chem. Eng. Technol., 37, 1009-1020 (2014). https://doi.org/10.1002/ceat.201300856
  20. A. Paethanom, S. Nakahara, M. Kobayashi, P. Prawisudha, and K. Yoshikawa, Performance of tar removal by absorption and adsorption for biomass gasification, Fuel Process. Technol., 104, 144-154 (2012). https://doi.org/10.1016/j.fuproc.2012.05.006
  21. M. Puig-Arnavat, J. C. Bruno, and A. Coronas, Review and analysis of biomass gasification models, Renew. Sustain. Energy Rev., 14, 2841-2851 (2010). https://doi.org/10.1016/j.rser.2010.07.030
  22. S. Shaul, E. Rabinovich, and H. Kalman, Typical fluidization characteristics for geldart's classification groups, Particulate Sci. Technol., 32, 197-205 (2014). https://doi.org/10.1080/02726351.2013.842624
  23. J.-H. Kim, Y.-M. Jo, J.-S. Kim, and S.-B. Kim, Removal of tar from biomass gasification process, J. Korea Acad. Ind. Coop. Soc., 19, 552-561 (2018).
  24. S. Osipovs, Comparison of efficiency of two methods for tar sampling in the syngas, Fuel, 103, 387-392 (2013). https://doi.org/10.1016/j.fuel.2012.05.021
  25. S. Hajar, M. Rashid, A. Nurnadia, and M. R. Ammar, The effect of prekotac on particle penetration through a ptfe filter media, Perintis, E-Journal, 5, 22-33 (2015).
  26. S. Schiller, C. Hellmich, and H.-J. Schmid, Evaluation of the efficiency of filtration processes using precoat materials, Chem. Eng. Technol., 39, 491-498 (2016). https://doi.org/10.1002/ceat.201500385
  27. R. Boudhan, A. Joubert, K. Gueraoui, S. Durecu, D. Venditti, D. T. Tran, and L. Le Coq, Pulse-jet bag filter performances for treatment of submicronic and nanosized particles from waste incineration, Waste Biomass Valorization, 9, 731-737 (2018). https://doi.org/10.1007/s12649-017-9858-4
  28. N. A. Ahmad and Z. A. Zainal, Performance and chemical composition of waste palm cooking oil as scrubbing medium for tar removal from biomass producer gas, J. Nat. Gas Sci. Eng., 32, 256-261 (2016). https://doi.org/10.1016/j.jngse.2016.03.015
  29. B. Ozturk and D. Yilmaz, Absorptive removal of volatile organic compounds from flue gas streams, Process Saf. Environ. Prot., 84(B5), 391-398 (2006). https://doi.org/10.1205/psep05003
  30. J. Zhang, W. Pan, Z. Long, C. Wang, and Z. Feng, Study of the oil mist filtration performance: Pressure drop characteristics and filter efficiency model, Aerosol Air Qual. Res., 17, 1063-1072 (2017). https://doi.org/10.4209/aaqr.2016.06.0258
  31. J. M. Gac, A. Jackiewicz, L. Werner, and S. Jakubiak, Consecutive filtration of solid particles and droplets in fibrous filters, Sep. Purif. Technol., 170, 234-240 (2016). https://doi.org/10.1016/j.seppur.2016.06.057