DOI QR코드

DOI QR Code

LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI

BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화

  • ;
  • ;
  • 임창균 (전남대학교 컴퓨터공학전공)
  • Received : 2019.10.26
  • Accepted : 2019.12.15
  • Published : 2019.12.31

Abstract

Emotion is a psycho-physiological process that plays an important role in human interactions. Affective computing is centered on the development of human-aware artificial intelligence that can understand and regulate emotions. This field of study is also critical as mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction are associated with emotion. Despite the efforts in emotions recognition and emotion detection from nonstationary, detecting emotions from abnormal EEG signals requires sophisticated learning algorithms because they require a high level of abstraction. In this paper, we investigated LSTM hyperparameters for an optimal emotion EEG classification. Results of several experiments are hereby presented. From the results, optimal LSTM hyperparameter configuration was achieved.

감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.

Keywords

References

  1. Sander Koelstra, Christian Muhl, Mohammad Soleymanim, Jong-Seok Lee, Ashkan Yazdani, Touradj Touradj Ebrahimi, Thierry Pun, Anton Nijholt, and Ioannis Patras, "Deap: A database for emotion analysis; using physiological signals," IEEE transactions on affective computing, vol. 3, no. 1, 2011, pp. 18-31. https://doi.org/10.1109/T-AFFC.2011.15
  2. W.-L. Zheng, W. Liu, Y. Lu, B.-L. Lu, and A. Cichocki, "Emotionmeter: A multimodal framework for recognizing human emotions," IEEE transactions on cybernetics, vol. 49, no. 3, 2018, pp. 1110-1122. https://doi.org/10.1109/tcyb.2018.2797176
  3. R. A. Calvo and S. D'Mello, "Affect detection: An interdisciplinary review of models, methods, and their applications," IEEE Transactions on affective computing, vol. 1, no. 1, 2010, pp. 18-37. https://doi.org/10.1109/T-AFFC.2010.1
  4. Al-Kaysi AM, Al-Ani A, Loo CK, Powell TY, Martin DM, Breakspear M, and Boonstra TW, "Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification," Journal of affective disorders, vol. 208, 2017, pp. 597-603. https://doi.org/10.1016/j.jad.2016.10.021
  5. S. Jirayucharoensak, S. Pan-Ngum, and P. Israsena, "EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation," The Scientific World Journal, 2014, vol. 2014, pp. 1-10
  6. J. Atkinson and D. Campos, "Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers," Expert Systems with Applications, vol. 47, 2016, pp. 35-41. https://doi.org/10.1016/j.eswa.2015.10.049
  7. Z. Mohammadi, J. Frounchi, and M. Amiri, "Wavelet-based emotion recognition system using EEG signal," Neural Computing and Applications, vol. 28, no. 8, 2017, pp. 1985-1990. https://doi.org/10.1007/s00521-015-2149-8
  8. Y. Kim, "Progressive Image Coding using Wavelet Transform," J. of the Korea Institute of Electronic Communication Sciences, Feb. 2014, vol. 9, no. 1, pp. 33-40. https://doi.org/10.13067/JKIECS.2014.9.1.33
  9. A. E. Vijayan, D. Sen, and A. Sudheer, "EEG-based emotion recognition using statistical measures and auto-regressive modeling," in 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 2015, pp. 587-591.
  10. Y. Zhang, X. Ji, and S. Zhang, "An approach to EEG-based emotion recognition using combined feature extraction method," Neuroscience letters, vol. 633, 2016, pp. 152-157. https://doi.org/10.1016/j.neulet.2016.09.037
  11. N. Zhuang, Y. Zeng, L. Tong, C. Zhang, H. Zhang, and B. Yan, "Emotion recognition from EEG signals using multidimensional information in EMD domain," BioMed research international, vol. 2017, 2017, pp. 1-9.
  12. Z. Lan, O. Sourina, L. Wang, and Y. Liu, "Real-time EEG-based emotion monitoring using stable features," The Visual Computer, vol. 32, no. 3, 2016, pp. 347-358. https://doi.org/10.1007/s00371-015-1183-y
  13. S. K. D'mello and J. Kory, "A review and meta-analysis of multimodal affect detection systems," ACM Computing Surveys (CSUR), vol. 47, no. 3, 2015, pp. 43:1-43:34.
  14. M. Soleymani, M. Pantic, and T. Pun, "Multimodal emotion recognition in response to videos," IEEE transactions on affective computing, vol. 3, no. 2, 2011, pp. 211-223. https://doi.org/10.1109/T-AFFC.2011.37
  15. S. Poria, I. Chaturvedi, E. Cambria, and A. Hussain, "Convolutional MKL based multimodal emotion recognition and sentiment analysis," in 2016 IEEE 16th international conference on data mining (ICDM), Barcelona, Spain, 2016, pp. 439-448.
  16. P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. W. Schuller, and S. Zafeiriou, "End-to-end multimodal emotion recognition using deep neural networks," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, 2017, pp. 1301-1309. https://doi.org/10.1109/JSTSP.2017.2764438
  17. H. Ranganathan, S. Chakraborty, and S. Panchanathan, "Multimodal emotion recognition using deep learning architectures," in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 2016, pp. 1-9.
  18. Z. Zhang, F. Ringeval, B. Dong, E. Coutinho, E. Marchi, and B. Schuller, "Enhanced semi-supervised learning for multimodal emotion recognition," in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 5185-5189.
  19. Tong, I. Aliyu, and C. Lim, "Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 6, Dec. 2018, pp. 1333-1342. https://doi.org/10.13067/jkiecs.2018.13.6.1333
  20. W.-L. Zheng and B.-L. Lu, "Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks," IEEE Transactions on Autonomous Mental Development, vol. 7, no. 3, 2015, pp. 162-175. https://doi.org/10.1109/TAMD.2015.2431497
  21. R.-N. Duan, J.-Y. Zhu, and B.-L. Lu, "Differential entropy feature for EEG-based emotion classification," in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 2013, pp. 81-84.