DOI QR코드

DOI QR Code

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite

탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용

  • Kim, Hyun-Mi (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Sung-Churl (Division of Materials Science and Engineering, Hanyang University) ;
  • Cho, Nam Choon (The 4th R&D Institute, Agency for Defense Development) ;
  • Lee, Hyung Ik (The 4th R&D Institute, Agency for Defense Development) ;
  • Choi, Kyoon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 김현미 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 최성철 (한양대학교 신소재공학부) ;
  • 조남춘 (국방과학연구소 제4 기술연구본부) ;
  • 이형익 (국방과학연구소 제4 기술연구본부) ;
  • 최균 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2019.11.08
  • Accepted : 2019.12.10
  • Published : 2019.12.31

Abstract

As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.

우주공간, 고에너지 플라즈마, 방사선 조사 환경과 같은 극한환경에서의 응용 분야가 증가함에 따라 더 높은 용융점 및 기계적 강도, 열전도도의 향상을 필요로 하는 재료에 대한 수요가 계속적으로 증가하고 있다. 이에 따라 대표적인 내열 소재인 탄소-탄소 복합체의 내산화/내삭마 특성을 개선하기 위하여 초고온 세라믹스를 이용하는 방법에 대하여 리뷰하였다. 초고온 세라믹스를 합성하는 가장 간단한 방법인 CVD 코팅법과 다른 코팅법인 pack cementation, 용사법의 장단점을 서로 비교하였다. 복잡한 형상의 C/C 복합체에 CVD 코팅법을 적용하기 위한 방법으로 열역학 계산 및 CFD 시뮬레이션의 활용 가능성을 제안하였다. 또한 이런 방법을 통하여 제작한 TaC/SiC 이중 층 코팅과 TaC/SiC 다중 층 코팅의 내산화 특성을 비교한 결과, 다중 층 코팅을 적용하였을 때 더 뛰어난 내산화성을 보이는 것을 확인하였다.

Keywords

References

  1. R. Storm, T. Benson, C. Galica and P. McCredie, "Learning to Fly: The Wright Brothers' Adventure", P. McCredie (Ed.) (NASA, Cleveland 2003) 1.
  2. D. Sziroczak and H. Smith, "A review of design issues specific to hypersonic flight vehicles", Prog. Aerosp. Sci. 84 (2016) 1. https://doi.org/10.1016/j.paerosci.2016.04.001
  3. X. Jin, X. Fan, C. Lu and T. Wang, "Advanced in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites", J. Eur. Ceram. Soc. 38 (2018) 1. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013
  4. A. Rodriguez and C. Snapp, "Thermal protection systems", Engineering Innovations NASA, 182.
  5. W.G. Fahrenholtz, "Ultra-high temperature ceramics: Materials for extreme environment application", 1st ed., W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee and Y. Zhou, Ed. (Wiley, Hoboken, 2014) 6.
  6. https://ntrs.nasa.gov/search.jsp?R=20130014035.
  7. C.A. Smith, "Space technology research and development", NASA reports (2004) 1.
  8. http://www.kari.re.kr/kor/sub03_03_02.do.
  9. J.S. Won and S.G. Lee, "State of the art of composite materials under extreme condition", Prospectives of Industrial Chemistry 17 (2014) 12.
  10. N.J. Shaw, J.A. DiCarlo, N.S. Jacobson, S.R. Levine, J.A. Nesbitt, H.B. Probst, W.A. Sanders and C.A. Stearns, "Materials for engine applications above $3000^{\circ}F$-an overview", NASA reports (1987) 1.
  11. S. Tang and C. Hu, "Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review", J. Mater. Sci. Technol. 33 (2017) 117. https://doi.org/10.1016/j.jmst.2016.08.004
  12. C. Zhou, Y. Qi, Y. Cheng and W. Han, "$ZrB_2-SiC-Ta_4HfC_5/Ta_4HfC_5$ oxidation-resistant dual-layer coating fabricated by spark plasma sintering for C/C composites", J. Mater. Eng. Perform. 28 (2019) 512. https://doi.org/10.1007/s11665-018-3807-7
  13. Y. Yang, K. Li and C. Zhao, "Ablation mechanism and morphology evolution of the HfC-SiC coating for C/C composites deposited by supersonic atmospheric plasma spraying", Adv. Compos. Lett. 28 (2019) 1.
  14. H.I. Yoo, H.S. Kim, B.G. Hong, I.C. Shin, K.H. Lim, B.J. Lim and S.Y. Moon, "Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a v acuum plasma s pray c oating m ethod", J. Eur. Ceram. Soc. 36 (2016) 1581. https://doi.org/10.1016/j.jeurceramsoc.2016.01.032
  15. Y.W. Yoo, U.H. Nam, S.H. Lee and E.S. Byon, "Characterization of ultra-high temperature ceramic coatings deposited by vacuum plasma spraying", E. C. I. (2015) 1.
  16. Y.J. Wang, H.J. Lin, Q.G. Fu, H. Wu, L. Liu and C. Sun, "Ablation behaviour of a TaC coating on SiC coated C/C composites at different temperatures", Ceram. Int. 39 (2013) 359. https://doi.org/10.1016/j.ceramint.2012.06.034
  17. Y. Wang, X. Xiong, G. Li, H. Liu, Z. Chen, W. Sun and X. Zhao, "Ablation behavior of HfC protective coatings for carbon/carbon composites in an oxyacetylene combustion flame", Corros. Sci. 65 (2012) 549. https://doi.org/10.1016/j.corsci.2012.08.064
  18. Y. Wang, X. Xiong, G. Li, X. Zhao, Z. Chen, W. Sun and Z. Wang, "Effect of gas composition on the microstructure and growth behavior of HfC coatings prepared by LPCVD", Solid State Sci. 20 (2013) 86. https://doi.org/10.1016/j.solidstatesciences.2013.02.011
  19. Y. Wang, Z. Li, X. Xiong, X. Li, Z. chen and W. Sun, "Action mechanism of hydrogen gas on deposition of HfC coating using $HfCl_4-CH_4-H_2$-Ar system", Appl. Surf. Sci. 390 (2016) 903. https://doi.org/10.1016/j.apsusc.2016.08.169
  20. X. Xiong, Z. Xhen, B. Huang, G. Li, F. Zheng, P. Xiao and H. Zhang, "Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition", Thin Solid Films 517 (2009) 3235. https://doi.org/10.1016/j.tsf.2008.11.058
  21. Z. Chen, X. Xiong, G. Li, W. Sun and Y. Long, "Texture structure and ablation behavior of TaC coating on carbon/carbon composites", Appl. Surf. Sci. 257 (2010) 656. https://doi.org/10.1016/j.apsusc.2010.07.064
  22. G. Lim X. Xiong and K. Huang, "Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites", Trans, Nonferrous Met. Soc. China 19 (2009) s689. https://doi.org/10.1016/S1003-6326(10)60133-1
  23. H. Li, Y. Wang and Q. Fu, "Ablation resistance of carbides-coated C/C Composites", Surf. Eng. 33 (2017) 803. https://doi.org/10.1080/02670844.2017.1319899
  24. S. Wang, K. Li, H. Li, Y. Zhang and W. Zhang, "Ablation behavior of CVD-ZrC coating under oxyacetylene torch environment with different heat fluxes", Int. J. Refract. Met. Hard Mater. 48 (2015) 108. https://doi.org/10.1016/j.ijrmhm.2014.07.042
  25. J.H. Park, C.H. Jung, W.J. Kim, D.J. Kim and J.Y. Park, "Microstructure and hardness change of the CVD-ZrC film with different deposition temperature", J. Korean Ceram. Soc. 45 (2008) 567. https://doi.org/10.4191/KCERS.2008.45.9.567
  26. https://calphad.org.
  27. J.W. Kim, H.T. Kim, K.J. Kim, J.H. Lee and K. Choi, "Application of 3-dimensional phase-diagram using FactSage in $C_3H_8-SiCl_4-H_2$ System", J. Korean Ceram. Soc. 48 (2011) 621. https://doi.org/10.4191/kcers.2011.48.6.621
  28. K. Choi and J.W. Kim, "Thermodynamic comparison of silicon carbide CVD process between $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems", Korean J. Met. Mater. 50 (2012) 569. https://doi.org/10.3365/KJMM.2012.50.8.569
  29. L. Guo, L. Li, Y. Guo and T. Deng, "Progress on thermodynamic databases", IOP Conf. Ser. Mater. Sci. Eng. 382 (2018) 1.
  30. H.M. Kim, K. Choi, K.B. Shim, N.C. Cho and J.K. Park, "Thermodynamic prediction of TaC CVD process in $TaCl_5-C_3H_6-H_2$ system", Korean J. Mater. Res. 28 (2018) 75. https://doi.org/10.3740/MRSK.2018.28.2.75
  31. H.M. Kim, K.B. Shim, J.M. Lee, H.I. Lee and K. Choi, "Thermodynamic analysis on the chemical vapor deposition process of Ta-C-H-Cl System", J. Ceram. Process. Res. 19 (2018) 519. https://doi.org/10.36410/JCPR.2018.19.6.519
  32. J.W. K im, Y.S. H an, K. C h oi a nd J .H. Lee, "Application of CFD simulation in SiC-CVD process", J. Comput. Fluids Eng. 18 (2013) 67. https://doi.org/10.6112/kscfe.2013.18.3.067
  33. K. Choi and J.W. Kim, " CFD simulation o f ch emical vapor deposition of silicon carbide in $CH_3SiCl_3-H_2$ system", Curr. Nanosci. 10 (2014) 135. https://doi.org/10.2174/1573413709666131109003414
  34. M.D. Allendorf and R.J. Kee, "A model of silicon carbide chemical vapor deposition", J. Electrochem. Soc. 138 (1991) 841. https://doi.org/10.1149/1.2085688
  35. A. Veneroni, F. Omarini and M. Masi, "Silicon carbide growth mechanisms from $SiH_4$, $SiHCl_3$ and $nC_3H_8$", Cryst. Res. Technol. 40 (2005) 972. https://doi.org/10.1002/crat.200410470
  36. A. Veneroni and M. Masi, "Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species", Chem. Vapor Dep. 12 (2006) 562. https://doi.org/10.1002/cvde.200606468
  37. A. Fiorucci, D. Moscatelli and M. Masi, "Mechanism of n-doping of silicon carbide epitaxial films", J. Cryst. Growth 303 (2007) 345. https://doi.org/10.1016/j.jcrysgro.2006.11.193
  38. A. Fiorucci, D. Moscatelli and M. Masi, "P-doping mechanism in HTCVD silicon carbide", J. Cryst. Growth 303 (2007) 349. https://doi.org/10.1016/j.jcrysgro.2006.12.066
  39. A. Veneroni and M. Masi, "Reduced gas phase and surface kinetics for silicon carbide epitaxial growth", Electrochem. Soc. Transact. 2 (2007) 11.
  40. A. Fiorucci, D. Moscatelli and M. Masi, "Homoepitaxial silicon carbide deposition processes via chlorine routes," Surf. Coat. Technol. 201 (2007) 8825. https://doi.org/10.1016/j.surfcoat.2007.04.110
  41. M. Masi, C. Cavallotti, D. Boccalari and F. Castellana, "Preliminary design of a novel high throughput CVD reactor for photovoltaic applications:, Cryst. Res. Technol. 49 (2014) 614. https://doi.org/10.1002/crat.201300391
  42. R. Wang and R. Ma, "Kinetics of halide chemical vapor deposition of silicon carbide film", J. Cryst. Growth 308 (2007) 189. https://doi.org/10.1016/j.jcrysgro.2007.07.038
  43. R. Wang and R. Ma, "An integrated model for halide chemical vapor deposition of silicon carbide epitaxial films", J. Cryst. Growth 310 (2008) 4248. https://doi.org/10.1016/j.jcrysgro.2008.06.060
  44. R. Wang and R. Ma, "Reactive flow in halide chemical vapor deposition of silicon carbide epitaxial films", J. Thermophys. Heat Transfer 22 (2008) 555. https://doi.org/10.2514/1.37729
  45. R. Wang, R. Ma and M. Dudley, "Reduction of chemical reaction mechanism for halide-assisted silicon carbide epitaxial film deposition", Ind. Eng. Chem. Res. 48 (2009) 3860. https://doi.org/10.1021/ie8017093
  46. J.W. Seo, J.W. Kim, K. Choi and J.H. Lee, "Improvement of uniformity in chemical vapor deposition of silicon carbide by using CFD", J. Korean Phys. Soc. 68 (2016) 170. https://doi.org/10.3938/jkps.68.170
  47. Y.K. Voronko, A.A. Sobol and V.E. Shukshin, "Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation", Phys. Solid State 49 (2007) 1871.
  48. Y. Jia, H. Li, L. Li, Q. Fu and K. Li, "Effect of monolithic $LaB_6$ on the ablation resistance of ZrC/SiC coating prepared by supersonic plasma spraying for C/C composites", J. Mater. Sci. Technol. 32 (2016) 996. https://doi.org/10.1016/j.jmst.2016.06.019
  49. M. Tong, Q. Fu, L. Zhou, T. Feng, H. Li, T. Li and K. Li, "Ablation behavior of a novel HfC-SiC gradient coating fabricated by a facile one-step chemical vapor co-deposition", J. Eur. Ceram. Soc. 38 (2018) 4346. https://doi.org/10.1016/j.jeurceramsoc.2018.05.034
  50. C. Omar, M. Dario, K. Boboridis, W. Tyson, G. Salvarote, D.D. Jayaseelan, R.J. M. Konings, M.J. Reece and W.E. Lee, "Investigating the highest melting temperature materials: A laser melting study of the TaCHfC system", Sci. Rep. 6 (2016) 1. https://doi.org/10.1038/s41598-016-0001-8
  51. Y. Wang, X . Xiong, G. Li, Z. Ch en, W. S un a nd X . Zhao, "Preparation and ablation properties of Hf(Ta)C co-deposition coating for carbon/carbon composites", Corros. Sci. 66 (2013) 177. https://doi.org/10.1016/j.corsci.2012.09.016
  52. S.J. McCormack, R.J. Weber and W.M. Kriven, "In-situ investigation of Hf6Ta2O17 anisotropic thermal expansion and topotactic, peritectic transformation", Acta Mater. 161 (2018) 127. https://doi.org/10.1016/j.actamat.2018.08.029
  53. F. Lamouroux, S. Bertrand, R. Pailler, R. Naslain and M. Caraldi, "oxidation-resistance carbon-fiber-reinforced ceramic-matrix composite", Compos. Sci. Technol. 59 (1999) 1073. https://doi.org/10.1016/S0266-3538(98)00146-8
  54. G. Li, X. Xiong, B. Huang and K. Huang, "Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites", Trans. Nonferrous Met. Soc. China 18 (2008) 255. https://doi.org/10.1016/S1003-6326(08)60045-X
  55. Z. Chen, X. Xiong, G. Li and Y. Wang, "Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers", Appl. Surf. Sci. 255 (2009) 9217. https://doi.org/10.1016/j.apsusc.2009.07.006
  56. H.M. Kim, S.C. Choi, Y.T. Kim, H.I. Lee and K. Choi, "Thermal shock resistance of TaC/SiC coatings on carbon/carbon composite by CVD process", Submitted to J. Ceram. Proc. Res.